

SANSKRIP WORKS IN PROGRESS,

A Translation of thè Súrya Siddhánta and Siddhánta S'iromani, by Pandita Bapu Deva Sástri, under the superintendence of Archdeacon Pratt: Fase. I. No. 1., containing the Súrya Siddhánta. The Vais'eshika Sútrias, with Oommentaries by Pandita Jaya Narayana Tarkapanchanana, Faso. I II, III, and IV, Nos. 4, 5, 6 and 8.

TRANSLATION
of tirs
siddiénta siriomani.

TRANSLATION

OF TIIR
 SÚRYA SIDDHÁNTA

3Y

PUNDIT BAPU DEVA SASTRI,

AND OF THA

SIDDHÁNTA ŚIROMANI
 BY THE LATE

LANCELOT WILKINSON, ESQ., C. S.,
hevisid BX

PUNDIT BAPƯ DEVA SASTRI, FROM THE SANSKRIT.

CALCUTTA:

CONTENTS.

Pago
Chaptrir I.-In praise of the advantages of the study of the Spheric, 105
Cinapter II.-Questions on the general view of the Sphere, 107
Cinaptrer III.-Called Bhuvana-kos/a or Cosmography, 112
Chapter IV.-Called Madhya-gati-vásana; on the principles of the Rules for finding the mean places of the Planets,... 127
Cinaptrar V.-On the principles on which the Rules for finding the true places of the Planets are grounded, 135
Cinapter VI.-Called Golabandha; on the construction of an Armillary Sphere, 151
Chapter VII.-Called Tripras'na-vasaná ; on the principles of - the Rules resolving the questions on time, space, and directions, 160
Cifaptrar VIII.-Called Grahama-vásane ; in explanation of the cause of Eclipses of the Sun and Moon 176
Ciraptrar IX.-Called Drikkarama-vasaná; on the principles of the Rules for finding the times of the rising and setting of the heavenly bodies, 196
Chapter X.-Called S'ringonnati-vásana; in explanation of the cause of the Phases of the Moon, 206
Cinapter XI.-Callod Yantradhyaya; on the use of astronomical instruments, 209
Cilaptrer XII.-Description of the Seasons, 228
Cilapter XIII.-Containing useful questions called Pras'na- dhyńya, 281

$$
\begin{aligned}
& \therefore \text { - }
\end{aligned}
$$

TRANSLATION OF THE GOLADHYAYA OF THE SIDDHANTA-S'IROMANI.

CHAPTER 1.

In praise of the advantages of the study of the Spheric. Sulutation to Ganesk!

Invocation.

1. Having saluted that God, who
when called upon brings all undertakings to a successful issue, and also that Goddess, through whose benign favour the tongues of poets, gifted with a flow of words ever new and with elegance, sweetness and playfulness, sport in their mouths as in a place of recreation, as dancinggirls adorned with boauty disport themselves in the dance with elegance and with every variety of step, I proceed to indite this work on the Sphere. It has been freed from all error, and rendered intelligible to the lowest capacity.
2. Inasmuch as no calculator can

Objeot of the work.
hope to acquire in the assemblage of tho learnod a distinguished reputation as an Astronomer, without a clear understanding of the principles upon which all the calculations of the mean and other places of the planets are founded, and to remove the doubts which may arise in his own mind, I therefore proceed to treat of the sphere, in such a manner as to make the reasons of all my calculations manifest. On inspecting the Globe they become clear and manifest as if submitted to the eye, and are as completely at command, as the wild apple (kywlá) held in the palm of the hand.

Ridicule of an ignorance of the Spluoric.
3. As a feast with abundance of all things but without clarified butter, and as a kingdom without a king, und an assemblage without eloquent speakers have little to recommend thom ; so the Astronomer who has no knowledge of the spheric, commands no consideration.
4. As a foolish impudent disputant, who ignorant of grammar (rudely) enters into the company of the learned and vainly prates, is brought to ridicule, and put to shame by the frowns and ironical remarks of even children of any smartness, so ho, who is ignorant of the spheric, is exposed in an assemblage of the Astronomers, by the various questions of really accomplished Astronomers.

Objeot of the Armillary sphere. the positions of the Farth, the stars, and tho planots : this is a species of figure, and hence it is deemed by the wise to be an object of mathematical calculation.

In praise of mathemation.

6. It is said by ancient astronomers that the purpose of the science is judicial astrology, and this indeed depends upon the influence of the horoscope, and this on the true places of the planets: these (true places) can be found only by a perfect knowledge of the spheric. A knowledge of the spheric is not to be attained without mathematical calculation. How then can a man, ignorant of mathematics, comprehend the doctrine of the sphere \&c.?

Who it likely to under.
7. Mathomatical calculations are take the study with effect. of two kinds, Arithmetical and Algebraical : he who has mastered both forms, is qualified if he have previously acquired (a perfect knowledge of) the Grammar (of the Sanskrit Language,) to undertake the study of the various branches of Astronomy. Otherwise he may acquire the name (but never the substantial knowledge) of an Astronomer.
8. He who has acquired a perfect knowledge of Grammar, which has been termed Vedavadana i. e. the mouth of the Vedas and domicile of Saraswati, may acquire a knowledge of every other science-nay of the Vedas themselves. For this reason it is that none, but he who has acquired a thorough knowledge of Grammar, is qualified to undertake the study of other sciences.
The opinion of others on 0 . 0 learned man; if you intend this work, quoted with a viow of extending the study of it. to study the spheric, study the Treatise of Bhiskara, it is neither too concise nor idly diffuse : it contains every essential principle of the science, and is of easy comprehension ; it is moreover written in an eloquent style, is made interesting with questions; it imparts to all who study it that manner of correct expression in learned assemblages, approved of by accomplished scholars.

End of Chapter I.

CHAPTER II.

Questions on the Genoral view of the Sphere.

Questions regarding the
Farth.

1. This Earth being encircled by the revolving planets, remains stationary in the heavens, within the orbits of all the revolving fixed stars ; tell me by whom or by what is it supported, that it falls not downwards (in space)?
2. Tell me also, after a full examination of all the various opinions on the sulject, its figure and magnitude, how its principal islands mountains and seas are situated in it?
3. Tell me, 0 my father, why the

Qucestions regarding thoso calculations used in ascortnining planots' truc places and their causes. place of a planet found out from well calculated Ahargana (or enumeration of mean terrestrial days, elapsed from
the commencement of the Kalpa)* by applying the rule of pro-

* [A Kalpa is that portion of time, which intervence betwoen one conjunotion
of all the planets at the Horizon of LaNEX (that place at the terrestrial equator,
where the longitude is $76^{\circ} \mathrm{E}$. , reokoned from Greonwich) at the first point of
Aries, and a subsequent similar conjunction. A KALPA consists of 14 mañs
and their 15 sandils; each mand lying botwoon 2 sandirs. Fach manu
containe 71 yoass; gach yuaa is dividol into yoaínahmes viz., Khira,
Theta', Dwípaba and Kale, the length of each of these is as the numbere
4, 3, 8 and 1. The beginning and end of each yUGA'NGHRIS being each one 12th
part of it are respectively called its bamdiyi and Sandera'nsa. The number
of sidereal years contained in each yuas'narrig, do. are shown bolow;

Of the present KALPA 6 צavus with their 7 sATDHIs, 27 Yடass and their three Yoga'mahrii. e. Krita, Theta, and Dwa'para, and $\mathbf{3 1 7 9}$ sidereal years of the fourth YUGA'MOIEI of the 28th YOGA of the 7th MANU, that is to say, 1,972,947,179 sidereal years have elapsed from the beginning of the present KALPA to the commencement of the SA'IIWA'rANA era. Now we can easily find out the number of years that have elapsed from the beginning of the present Kanpa to any time we like.

By astronomical observations the number of terrestrial and aynodic lunar days in any given number of jears can be ascertained and then, with the result found, their number in a Kalpa or Yuga can be calculated by the rule of proportion.

By this method ancient Astronomers found out the number of lunar and torrestrial days in a Kalpa as given below.
and $1,602,999,000,000$ (eynodic) lunar days $\}$ in a KıLPA.
With the foregoing results and a knowledge of the number of sidercal jcars contained in a KALPA as well of those thut liave passed, we carl find out tho number of mean torreatrial daye from the boginning of a Kalsa to any given day. This number is oalled airargana and the mothod of fluding it is giron in Ganitíduyiza by Bha'guarioua'uya.

By the daily mean motions of the planets, ascertained by astronomical observations, the numbers of their revolutions in a Kalpa are known and are given in works on Astronomy.

To find the place of a planet by the number of its revolutions, the number of days contained in a Kampa and the Amargana to a giveu day, tho following proportion is used.

As the terrestrial days in a KALPA,
: the number of revolutions of a planet in a Kalpa
: the Ahargana :
: the number of revolutions and signs to. of the planet in the Arargasa.
By learing out the number of revolutions, contained in the result found, the remaining signs \&o. indicate the place of the planet.

Now, the intention of the queriat is this, why should not this be the true plece of a planet? In the Ganitidiyiza. Bhisyariona'sya has stated the revolutions in a Kalpa, but he has here mentioned the revolutions in a yuas on acoount of his onnstant study of the 8'isirya-difíriddirda-TAntra, a Troatise on Astronomy by LaLuA who has atatod in it the repolutions in Y YOA. B. D.]
portion to the revolutions in the Yuas* \&c. is not a true one? (i. e. why is it only a mean and not the true place) and why the rules for finding the true places of the different planets are not of the same kind? What are the Deskntaia, Udaykntara, Bhujántara, andChara corrections? \dagger What is theMandochcha \ddagger (slow or 1st Apogee) and S'fahrochcia§ (quick or 2nd Apogee)? What is the node?
4. What is the Krndra $\|$ and that which arises from it (i. e. the sine, cosine, \&c. of $i t$)? What is the Mandaphala\| (the first equation) and S'farraphala ${ }^{\text {I }}$ (the 2nd equation) which depend on the sine of the Krndra? Why does the place of a planet become true, when the Mandaphala or S'fahraphala

[^0]are (at one time) added to and (at another) subtractod from it? What is the twofold correction called Dŗikiarma* which learned astronomers have applied (to the true place of a planet) at the rising and setting of the planet? Answer me all these questions plainly, if you have a thorough knowledge of the sphere.

Questions regarding the length of the day and night. ern hemisphere?

Questions regarding the length of the day and night of the Gods Daityas, Pitrpis and Beatma'.
5. Tell me, \mathbf{O} you acute astronomer, why, when the Sun is on the northern hemisphere, is the day long and the night short, and the day short and the night long when the Sun is on the south-
6. How is it that the day and night of the Gods and their enemies Daityas correspond in length with the solar years? How is it that the night and day of the Pirpis is equal in length to a (synodic) lunar month, and how is it that the day and night of Jbaimá is 2000 yoasis \dagger in length?

Questions regarding the periods of risings of the signs of the Zodiaco.
7. Why, 0 Astronomer, is it that the 12 signs of the Zodiac which are all of equal length, rise in unequal times (even at the Equator,) and why are not those periods of rising the same in all countries?

Questions as to the places of the Drujyi, the Kojxi', \&o.
8. Shew me, 0 learned one, tho places of the Drojyß (the radius of the diurnal circle), the KUJY乏 (the sine of that part of the arc of the diurnal circle intercepted between the horizon and the six o'clock line, i. e. of the ascensional difference in terms

[^1]of a small circle), and show mo also the places of the declination, Sama-sínio,* Agra (the sine of amplitude), latitude and co-latitude \&e. in this Armillary sphere as these places are in the heavens.

> Questions regarding cortain diflerences in the times nud places of solur aud lunar Eclipsces.

If the middle of a lunar Eclipse takes place at the end of the Tirii (at the full moon), why does not the middle of the solar Leclipse take place in like manner at the change? Why is the Eastern limb of tho Moon in a lunar Eelipse first iuvolved in obscurity, and the western limb of the Sun first eclipsed in a solar Eclipse? \dagger

Questions regarding the | 9. What, O most intelligent one, |
| :--- |
| parullaxes. | is the Lambana \ddagger and what is the Nati? why is the Lambana applied to the Tithi and the Nati applied to the latitude (of the Moon)? and why are these corrections settled by means (of the radius) of the Earth?

Qucalinns ragariling tho
10. Nh! why, after lieing full, docs phases of the Moon. the Moon, having lost her pure brightness, lose her circularily, is it were, by her too close association, caused by her diurnal revolution with the night: and why again after having arrived in the same sign as the Sun, docs she thenceforth, by successive augmentation of her pure

[^2]brightness, as from association with the Sun, attain her circular form?*

End of the second Chapter.

CHAPTER III.

Called Bluvana-kios'a or Cosmograplıy.
The excollence of the 1. TheSupreme Being Para BratrSupreme Being. Ma the first principle, excels eternally. From the soul (Purdsia) and nature (Prakriti,) when excited by the first principle, arose the first Great Intelligence called the Mahattattwa or Buddhitattwa : from it sprung self-conscionsness (Ahank\&ra :) from it wore produced tho Ithor, Air, Fire, Water, and Earth ; and by the combination of thoso was mado tho univorso Braimenpa, in the contro of which is tho Earth : and from Brahm Chaturínana, residing on the surface of the Earth, sprung all animate and inanimate things.

Deseription of the Earth.
2. This Globe of the Earth formed of (the five elementary principles) Earth, Air, Water, the Ether, and Fire, is perfectly round, and encompassed by the orbits of the Moon, Mercury, Venus, the Sun, Mars, Jupiter, and Saturn, and by the constellations. It has no (material) supporter; but stands firmly in the expanse of heaven by its own inherent force. On its surface throughout subsist (in security) all animate and inanimate objects, Danujas and human beings, Gods and Daityas.

[^3]3. . It is covered on all sides with multitudes of mountains, groves, towns and sacred edifices, as is the bulb of the Nauclea's globular flower with its multitude of anthers.

Refutation of the supposition that the Earth has successive supporters.
4. If the Earth were supported by any material substance or living creature, then that would require a second supporter, and for that second a third would be required. Here we have the absurdity of an interminable series. If the last of the series be supposed to remain firm by its own inherent power, then why may not the same power be supposed to exist in the first, that is in the Earth? For is not the Earth ono of tho forms of the oight-fold divinity i. e. of S'iva.

Rofutation of tho objcetion, ns to how the Narth has its own inherent power.
5. As heat is an inherent property of the Suu and of Fire, as cold of the Moon, fluidity of water, and hardness of stones, and as the Air is volatile, so the earth is naturally immoveable. For oh! the properties existing in things are wonderful.
6. 'Iho* property of attraction is inherent in tho Darth. By this property the Earth attacts any unsupported heavy thing towards it: I'ho thing apporrs to bo falling [but it is in a state of being drawn to the Earth]. The etherial expanse being equally outspread all around, where can the Earth fall?

Opinion of the Batd.
7. Observing the revolution of the dhas. constellations, the Badddhas thought that tho liarth had no support, nud ns no honvy body is soen stationary in the air, they asserted that the earth \dagger goes eternally downwards in space.
8. Ihe Jainas and others maintain that there are two Suns and two

[^4]Moons, and also two sets of constellations, which rise in constant alternation. To them I give this appropriate answer.

Refutation of the opinion of the Baddonas.
9. Observing as you do, O BaudDHA, that every heavy body projected into the air, comes back ngain to, and overtakes the Earth, how then can you idly maintain that the Earth is falling down in space? [If true, the Earth being the heavier body, would, he imagines*-perpetually gain on the higher projectile and never allow its overtaking it.]

Refutation of the opinion of the Jansas.
10. But what shall I say to thy folly, 0 Jaina, who without object or use supposest a double set of constellations, two Suns and two Moons? Dost thou not see that the visible circumpolar constellations take a whole day to complete their revolutions?

Rofutation of the sapposi- 11. If this blessod Earth were level, tion that the Rarth is level. like a plane mirror, then why is not the sun, rovolving above at n distanco from tho Parth, visilhle to men as well as to the Gods? (on the l'aursnika hypothesis, that it is always revolving about Merv, above and horizontally to the Earth.
12. If the Golden mountain (Mrru) is the cause of night, then why is it not visible when it intervenes between us and the Sun? And Merd being admitted (by the Pauranikas) to lie to the North, how comes it to pass that the Stur rises (for half the year) to the South ?

Reason of the falee appearance of tho plane form of the Earth.
18. As the one-hundredth part of the circumference of a circle is (scarcely different from) a plane, and as the Earth is an excessively large body, and a man exceedingly small (in comparison,) the whole visible portion of the Earth consequently appears to a man on its surface to be perfectly plane,

[^5]Proof of the correctness of alleged circuarferonce of the Earth.
14. That the correct dimensions of the circumference of the Earth have been stated may be proved by the simple Rule of proportion in this mode : (ascertain the difference in Yujanas between two towns in an exact north and south line, and ascertain also the difference of the latitudes of those towns : then say) if the difference of latitude gives this distance in Yojanas, what will the whole circumference of $\mathbf{3 6 0}$ degrees give ?
15. As it is ascertained by calculation that the city of UjJayinf is situated at a distance from the equator equal to the one-sixteenth part of tho whole circmuforonce : this distance, therefore, multiplied by 16 will be the measure of the Earth's circumfercuce. What reason then is there in attributing (as the Paurinikas do) such an immense magnitude to the earth ?
16. For the position of the moon's cusps, the conjunction of the planets, eclipses, the time of the risings and settings of the planets, the lengths of the shadows of the gnomon, \&e., me all consistont with this (estimato of the extent of tho) circumference, and not with any othor ; therefore it is declared that the correctness of the aforesaid measurement of the earth is proved both directly and indirectly,-(directly, by its agreeing with the phenomena; -indirectly, by no other estimate agreeing with the phenomena).
17. Lanká is situated in the middle of the Earth : Yayakoti is situated to thg East of Lanke, and Romakapattana to the west. The city of Siddhapura lies underneath Lanká. Sumbine is situated to the North (under the North l.'ole,) and Vadavanala to the South of Lanka (under the south Pole):
18. These six places are situated at a distance of one-fourth part of the Earth's circumference each from its adjoining one. So those who have a knowledge of Geography maintain. At Meru reside the Gods and the Siddhas, whilst at Vadavínala are situated all the hells and the Daityas.
19. A man on whatever part of the Globe he may be, thinks the Earth to be under his feet, and that he is standing up right upon it : but two individuals placed at 90° from each other, fancy each that the other is standing in a horizontal line, as it were at right angles to himself.
20. Those who are placed at the distance of half the Earth's circumference from each other are mutually antipodes, as a man on the bank of a river and his shadow reflected in the water : But as well those who are situated at the distance of 90° as those who are situated at that of 180° from you, maintain their positions without difficulty. 'They stand with tho same ease as we do here in our position.

Positions of the Dwfpas 21. Most learned astronomers have and Seas. stated that Jaybúdwipa embraces the whole northern hemisphere lying to the north of the salt sea: and that the other six Dwípas and the (soven) Seas viz. those of salt, milk, \&cc. are all situated in the southern homisphere.
22. To the south of the equator lies the salt sea, and to the south of it the sea of milk, whence sprung the nectar, the Moon and the Goddess Lakshmi, and where the Omnipresent VAsudeva, to whose Lotus-feet Brahmí and all the Gods bow in reverence, holds his favorite residence.
23. Beyond the sea of milk lie in succession the seas of curds, clarified butter, sugar-cane-juice, and wine: and, last of all, that of sweet Water, which surrounds Vadavánala. The Pátála Lokas or infernal regions, form the concave strata of the Earth.
24. In those lower regions dwell the race of serpents (who live) in the light shed by the rays issuing from the multitude of the brilliant jewels of their crests, together with the multitude of Asuras; and there the Siddias enjoy themselves with the pleasing persons of beautiful females resembling the finest gold in purity.
25. The S'áka, S'ślmala, Kaus'a, Kráuncha, Gomedaka, and

Pushikara.Dwifas are situated [in the intervals of the above mentioned seas] in regular alternation : each Dwípa lying, it is said, botween two of these seas.

Positions of the Mountains in JAMbú Dwípa and ite nine Kganpas parts caused by the mountaino.
26. 'To the North of Lankí lies the Himslapa mountain, and beyond that the Hemaḱuta mountain and leyond that again the Nibuadia mountain. These three Mountains stretch from sea to sca. In like mannor to the north of Siddiapura lie in succession the S'ringavin S'ukla and Níla mountains. To the valleys lying between these mountains the wise have given the name of Varsias.
27. This valley which we inhabit is called the Berratavarsia; to the North of it lies the Kinnaravarsha, and boyond it again the Harivarsiia, and know that the north of Siddhapura in like manner are situated the Kord, Hirañmaya and Ramyaka Varshas.
28. To the north of Yamakoti lies the Malyaván mountain, and to the north of Romarapattana the Gandhamindana mountain. These two mountains are terminated by the Nflu mad Nisuapira mountains, and tho space botwoen these two is called the llívrita Varsha.
29. The country lying between the Mklyavin mountain and the sea, is called the Bhadras'wa-varsia by the learned; and geographers have denominated the country between the Gandhamádana and the sea, the Ketumíla-vareha.
30. The Ilavrita-tarsha, which is bounded by the Nisiladifa, Níla, Gandiamadana and Malyavkn mountains, is distinguished by a peculiar splendour. It is a land rendered brilliant by its shining gold, and thickly covered with the bowers of the immortal Gods.

Position of the mountain Mreu in Ild́verta.
31. In the middle of the Ilavrita Varsha stands the mountain Meru, which is composed of gold and of precious stones, the abode of the iminortal Gods. Expounders of the Puranas have further described this Mery to be the pericarp of the earthlotus whence Braime had his birth.
32. The four mountains Mandara, Sugandha, Vipula and Supars'wa serve as buttresses to support this Meru, and upon these four hills grow severally the Kadamba, Jambú, Vapa and Pippala trees which are as bannors on thoso four hills.
33. From the clear juice which flows from the fruit of the Jambú springs the jambúnadf; from contact with this juico earth becomes gold : and it is from this fact that gold is called jKmbúnada : [this juice is of so exquisito a flavour that] the multitude of the immortal Gods and Siddias, turning with distaste from noctar, delight to quaff this dolicious boverage.
34. And it is well known that upon those four hills [the buttresses of Mrro] are four gardens, ($1 s t$) Chaitraratha of varied brilliancy [sacred to Kubera], ($2 n d$) Nandana which is the delight of the Apsaras, (3 ral) the Dirimi which gives refreshment to the Gods, and (4th) the resplendent Vaibhraja.
35. And in these gardens are bcautified four resorvoirs, viz. the Ardna, the Mánasa, the Maháhrada and the S^{\prime} wetajala, in due order: and these are the lakes in the waters of which the celestial spirits, when fatigued with their dalliance with the fair Goddesses, love to disport thomsolves.
36. Mero divided itself into three peaks, upon which are situated the three citios sacred to Visingo, Braina and S'iva [denominated Vaikuntha, Brahmapura, and Kailasa], and beneath them are the eight cities sacred to Indra, Agni, Yama, Nairpita, Varuna, Váyo, S'as'f, and Is'a, [i. e. the regents of the eight Diks or directions,* viz., the east sacred to

[^6]Indra, the south-east sacred to Aani, the south sacred to Yama, the south-west sacred to Nairpita, the west sacred to Varuna, the north-west sacred to Vkyu, the north sacred to S'as'í and the north-east sacred to $\mathrm{I}^{\prime}{ }^{\prime}{ }^{\prime}$.]
Some peculiarity. 37. The sacred Ganges, springing from the Foot of Vishnu, falls upon mount Merd, and thence separating itself into four streams descends through the heavens down upon the four VishrambHas or buttress hills, and thus falls into the four reservoirs [above described].
38. [Of the four streams above mentioned], the first called Síta, went to Bhadras'wa-varsha, the second, called Alakanandi, to Bhírata-varsiia, the third, called Chakshu, to Kriumála-varsua, and the fourth, called Bhadrk to Uttara Kuru [or North Kuru].
39. And this sacred river has so rare an efficacy that if her name be listened to, if she be sought to be seen, if seen, touched or bathed in, if her waters be tasted, if her name lo uttorol, or brought to mind, and hor virtios bo colobratod, sho purifies in many ways thousands of sinful men [from their sins].
40. And if a man make a pilgrimage to this sacred stream, the whole line of his progenitors, bursting the bands [imposed on them by YamA], bound away in liberty, and dance with joy; nay even, by a man's approach to its banks they repulse the slaves of Yama [who kept guard over them], and, escaping from Naraka [the infernal regions], secure an abode in the happy regions of Heaven.
pura lies from Merd is north. The buttresses of Mrbt, Mandara, Sugandia, \&c. are situated in the east, south \&o. from Mnso respectively. B. D.]

Note on verses from 21 to 43 :-Braskara'cilárya has exercised his ingenuity In giving a locality on tho earth to the poetical imaginations of Vra'sa, $^{\text {a }}$ at the same timo that he hus preserved his own principles in regard to the form and dimensions of the Earth. But he himself attached no credit to what he hes described in these verses for he ooncludes his recital in his commentary with the words.

यदिदमुक्ष तस् षव पुराषाश्रितन्।

"What is statod here rests all on tho authority of the Pubinnas."
As much as to say "crolat Judous." L. W.

The 9 ThANDAS and 7 molichalas of Bha'rataจАrbia.
41. Here in this Bhkrata-varsha are embraced the following nine кнanpas [portions] viz. Aindra, Kas'rru, Thiraparna, Gabhastimat, Kumarike, Neaa, Saumya, Váruna, and lastly Gíndharva.
42. In the Kousrisk alone is found the subdivision of men into castes; in the remaining кhanpas are found all the tribes of Antyajas or outcaste tribes of men. In this region [Bhírata-varbha] are also seven culíchalas, viz. the mahendra, Sukti, Malaya, luikbiaka, Pchiý́tra, tho Sahya, and Vindiya hills.

Arrangement of the seven Lozes worlds.
43. The country to the south of the equator is called the Bhórloka, that to the north the Bhuvaloks and Merv [the third] is callod the Swarloka, next is the Mainaloka in the Hoaveus beyond this is the Janaloka, then the Taporoka and last of all tho Satyaioka. 'Ihoso inkas mro gradually aluinud by increasing religious merits.
44. When it is sunrise at Lanki, it is then midday at Yamakoti (90° east of Laní $)^{\text {) , sunset }}$ at Siddhapura and midnight at Romakapattana.

Points of the compass why MRRD is due north of all places.
45. Assume the point of the horizon at which the sum rises as tho oast point, and that at which ho sets as the west point, and then determine the other two points, i. e., the north and south through the matsya* effected by the east and west points. The line connecting the north and south points will be a meridian line and this line in whatover place it is drawn will fall upon tho north point: hence Merv lies due north of all places.

[^7][^8]from it: but Lanka and not Ujuayiní lies duo west from Yamakoti.
47. The same is the case everywhore ; no place can lio west of that which is to its east except on the equator, so that east aud west are strangely related.*

Right sphere.
48. A man situated on the equator sees both the north and south polos touching [the north and south points of] the horizon, and the colestial sphero resting (as it were) upon the two poles as centres of motion and revolving vertically over his head in the heavens, as the Persian water-wheel.

Obliquo sphoro.
49. As a man proceeds north from tho equator, ho observos the constellations [that revolve vertically over his head whon seen from the equator] to revolve obliquely, being deflected from his vertical point: and the north pole olevated above his horizon. The degrees between the pole and the horizon are the degrees of latitude [at the place]. These dogrees aro causod by tho Yojanas [between tho equator and the places.

ILow tho dogrons of latitinilo nro produced from tho distanco in YOJANAs and vioc versa.
50. Tho number of Yojanas [in tho arc of any terrostrinal or colostial circle] multiplied by 360 and dividod by [the number in Yojanas in] the circumference of the circle is the number of degrees [of that arc] in the oarth or in tho planetary orbit in the heavons. Tho Yosanas are found from the degroes by reversing the calculation.
51. The Gods who live in tho Parallol sploro. mount Mere observe at their zenilh

[^9]the north pole, whilo the Daityas in Vadavínala tho south pole. But while the Gods behold tho constellations revolving from left to right, to the Dartyas they appear to revolvo from right to left. But to both Gods and Daityas the equatorial constellations appear to revolve on and correspond with the horizon.

Dimensions of the Farth's circumference.
52. The circumference of the earth has been pronounced to be 4967

Yojanas and the diameter of the same has been declared to be 1581辰 Yojanas in length : the superficial aroa of the Farth, like the net enclosing the hand ball, is $78,53,034$ square Yojanas, and is found by multiplying the circumference by the diameter.*

The error of Lalla is exposed in regard to the superflcial arce of the liarth.
53. The superficial area of the Earth, like the net enclosing tho hand ball, is most orroneously stated by Lalla : the true aroa not amounting to ono handroilth part of that so idly assumed by him. His dimensions aro contrary to what is found by actual inspection : my charge of error therefore cannot be pronounced to be rude and uncalled for. But if any doubt be entertained, I beg you, O learned mathomaticians, to examine well and with tho utmost impartiality whether the amount stated by me or that stated by him is the correct one. [The amount stated by Latida in his

[^10]work entitled Ditívßiddiidn-tantra is 285,63,38,557 squaro Yojanas, which he appears to have found by multiplying the squaro contents of the circlo by the circumference.]
Shows the wrongness of 54. If a piece of cloth be cut in the Rule given by Lalla.
a circular form with a diameter equal to half the circumference of the sphere, then half of the sphere will bo (entirely) covered by that circular cloth and there will still be some cloth to spare.
55. As the area of this piece of cloth is to be found nearly $2 \frac{1}{2}$ times the area of a great circle of the sphere: and the area of the piece of cloth covering the other half of the sphere is also the same; *
56. Therefore the area of the whole sphere cannot be more than 5 times tho area of tho great circle of the spherc. How thon has ho multiplied [the area of the great circle of tho sphere] by the circumference [to get the superficial contents of the sphere] ?
57. As the area of a great circle [of the sphere] multiplied by the circumference is without reason, the rule (therefore of 1alisin for tho suporficial contonts of tho sphoro) is wrong, and the superficial aren of the Earth (given by him) is consequontly wrong.

Otherwise.
58,59 . Suppose the length of the
[equatorial] circumference of the globe equal to 4 times the number of sines [viz. 96 , there being 24 sines calculated for every $3^{\circ} \frac{3}{4}$, which number multiplied by $4=96$] and such oblong sections equal to the number of the length of the said circumference and marked with the vertical lines [runuing from pole to pole], as there are seen formed by nature on the \AA ANwL fruit marked off by the lines running from the top of it to its bottom.

[^11]60. If wo determine the superficial area of one of theso sections by means of its parts, wo have it in this form. Sum of all the sines diminished by half of the radius and divided by the same.*
*The correctness of this form is thus briefly illustrated by Bra'srara'cha'bya in his commentary.

Let $g a h a_{2} g$ be tho section in which $a b, b o, o d$ \&o. and $a_{1} b_{1}, b_{1} c_{1}, c_{1} d_{13}, \& 0$. are each equal to 1 cubit and also $a a_{1}$ arc equal to 1 cubit: then $b b_{1}, c c_{1}, d d_{3}$, \&c. are proportional to the sines $m b, m, 0 d, \& c$. and are thus found.

$$
\text { If } \begin{aligned}
k a \text { or rad : give, } a a 1(=1):: m b: b b_{2} & =\frac{m b .}{R a d .} \\
\text { If Rad }: 1:: n c: c c_{2} & =\frac{n c}{R a d} \\
\text { again Rad }: 1:: o d: d d_{1} & =\frac{o d}{R a d}
\end{aligned}
$$

\&e.

Now $a a_{1}, b b_{1}, c 0_{1}$, sco. being found, the contents of onch of $a \pi_{2} b_{1} b_{3}\left\langle b_{3}, c_{1}, \infty_{1} \infty_{1} d_{2} l\right.$, \& a the part of tho mection is found by taking half the sum of $a a_{2} \& b b_{2}$ $\omega_{1} \& c c_{1}, c c_{2} \& \quad d d_{1} \& c_{\text {. and multiplying it by } a b}$
 (which is oqual to endh of $l o$, cel, Ken.) horo ab is assumed ns 1 nuld tho whoho anrface oach of $a a_{1} b_{2} b_{2}, 2 b_{1} c_{2} a$ as a plano, for an arc of $3{ }^{\circ}{ }_{3}$ is scarculy dilforent
from a plane.

Now to find the sum of $a a_{1} b_{2} b, b b_{3} c_{1} a$ \&co. we have

$$
\frac{a a_{1}+b b_{1}}{8} \times 1+\frac{b b_{1}+c c_{1}}{2} \times 1+\frac{c c_{2}+d d_{1}}{2} \times 1+k c
$$

adding theee and leaving out 1 multiplier, we have
$\frac{1}{2} a a_{3}+b b_{1}+c c_{2}+d d_{1}+8 c$.
Substituting the valuen of $a a_{1}, b b_{1}$, dce. We have

$$
m b \text { no od }
$$

$+\frac{1}{\boldsymbol{R}}+\frac{\boldsymbol{R}}{\boldsymbol{R}}+\frac{\boldsymbol{R}}{\boldsymbol{R}}+\& \mathrm{c}_{\mathrm{s}} s 0$ on for the assumal sinos
but $\frac{t}{}=\frac{\hat{1} \boldsymbol{R}}{R}=\frac{\boldsymbol{R}}{R}-\frac{\frac{1}{\boldsymbol{i} R}}{\boldsymbol{R}}$
By subatitution we get

$$
=\frac{\frac{R}{R}+\frac{m b}{R}+\frac{n}{R}+80 \ldots-\frac{1 R}{R}}{R}
$$

It is orident from this that the sum of all the sines diminished by the half of the Radius and divided by the Radius is equal to the contents of tho upper half of the section, therefore by dividing by i had wo got the whole section instead of ouly the upper lialf of it.
i. a. contents of the whole scotion $=\frac{\operatorname{sum} \text { of all the sines }-\frac{1}{1} \boldsymbol{R}}{\frac{1}{R}}=A$.
61. As tho superficial area of one soction thus determined is equal to the diametor of the globe, the product found by multiplying tho dinmoter by tho circumforenco has theroforo boen assorted to be the superficial contents of a sphere.
The grand deluges or dis. 62. The earth is said to swell to solutious. the extent of one Yojana equally all around [from the centro] in a day of Brahia by reason of the decay of the natural productions which grow upon it: in the 13rainu deluge that increase is again lost. In the grand deluge [in which Bharma himself as well as all nature fades awny then] the Earth itself is reduced to a state of nonentity.

> Aro four-fold.
63. That extinction which is daily traking placo amongst created beings is called tho Dainandina or daily oxtinction. Tho Braima oxlinction or delugo takes place at the ond of Braimás day: for all created beings are then absorbed in Brahma's body.
64. As on the extinction of Brabma himself all things are dissolved into nature, wise men therefore call that dissolution tho Prekpitikn or resolution into nature. Things thus in a whate of oxtinction lanving thoir destinios soverally fixud aro ngain producod in separate forms when nature is excitod (by tho Crcator).
65. The devout men, who have destroyed all their virtues and sins by a knowledge of the soul, having abstracted their minds from worldly acts, concentrate their thoughts on the

[^12]Supreme Being, and after their death, as they attain the stato from which there is no return, the wise men therefore denominate this state the Átyantika dissolution. Thus the dissolutions are four-fold.

The universe.
66. The earth and its mountains, the Gods and Danavas, men and others and also the orbits of the constellations and plancts and the Lokas which, it is said, are arranged one above the other, are all included in what has been donominated the Brahmónda (universe).

Dimonsions of the Brain- 67. Somo astronomers have assertми'миุц. ed the circumforence of the circle of Heaven to be $18,712,069,200,000,000$ Yojanas in length. Some say that this is the length of the zone which binds the two hemispheres of the Brahminpa. Some Paurinikas soy that this is the length of the circumforence of the Joкaloka Parvata.*

[^13]68. Those, however, who have had a most perfect mastery of tho clear doctrine of the sphere, have declared that this is tho length of that circumference bounding the limits, to which the darkness dispelling rays of the Sun extend.
69. But let this be the length of the circumference of the Brahminda or not: [of that I have no sure knowledge] but it is my opinion that cach planet travorses a distance corresponding to this number of Yojanas in the course of a Kalid or s day of Braima and that it has been called the Kharakshí by tho ancients.

End of third Chapter called the Bhovana-kos'a or cosmograpliy.

CHAPTER IV.
 Called Madhya-gati-vksank.

On the principles of the Rules for finding the mean places of the Planets.
lincos of tho sovoral 1. Ihe sovon [grand] winds havo winds. thus been named : viz.-
1st. The Kvalia or atmosphere.
2nd. The Pravaha beyond it.
3rd. The Udvaha.
4th. The Samvaha.
5th. The Suvaha.
6th. The Parivalia.
7th. The Parávaha.
2. The atmosphere extends to the height of 12 Yojanas from the Earth : within this limit are the clouds, lightning, \&c. The Pravaha wind which is above the atmosphere moves conslantly to tho wostward with uniform motion.
3. As this sphere of the universe includes the fixed stars and plancts, it theroforo boing impelled by the l'ravaha wind, is carriod round with the slars and plancts in a constant rovolution.

An illustration of the motion of tho planets.
4. The Plancts moving oastwarl in the Heavens with a slow motion, appear as if fixed on account of the rapid motion of the sphere of the Heavens to the west, as insocts moving roversely on a whirling potter's wheel appear to be stationary [by roason of their comparatively slow motion].
sidereal and terreatrial 5. If a star and the Sun rise simultadays and their lengths. neously [on any day], the star will rise again (on the following morning) in 60 sidereal anafikis : the Sun, however, will rise later by the number of asus (sixths of a sidereal minute), found by dividing the product of the Sun's daily motion [in minutes] and the asus which the sign, in which the Sun is, takes in rising, by 1800 [the number of minutes which each sign of the ecliptic contains in itself].
6. The time thus found addod to tho 60 siduroal arratioás forms a true terrestrial day or natural day. 'Tho longth of this day is variablo, as it doponds on lho Sun's diaily motion and on the time [which different signs of tho ecliptic take] in rising, [in different latitudes: both of which are variable elements].*

[^14]Rovolutions of the Sun in a year are lees than the revolutions of stars by one.
7. Δ sideroal day consists invariably of 60 sidereal aHatikks : a mean sívana day of the Sun or terrestrial day consists of that time with an addition of the number of asus equal to the number of the Sun's daily mean motion [in minutes]. Thus the number of terrestrial days in a year is less by one than the number of revolutions made by the fixed stars.

Longth of solar year.
8. The length of the (solar) year is 365 days, 15 GHatikís, 30 palas, $22 \frac{1}{2}$ vipalas reckoned in Bhumi skvana or terrestrial days: The $1_{1}{ }^{\text {th }}$ of this is called a saura (solar) month, viz. 30 days, 26 ahatikes, 17 palas, 31 vipalas, $52 \frac{1}{2}$ pravipalas. Thirty sávana or terrestrial days make a aifana month.*

Length of lunar month 9. The time in which the Moon or lunation. [after being in conjunction with the Sun] completing a revolution with the difference between the daily motion and that of the Sun, again overtakes the Sun, (which moves at a slower rate) is called a Lunar month. It is 29 dnys, 31 Gilatikas, 50 palas in longth. \dagger
The renson of additivo 10. An $\triangle D H E S S A$ or additivo month monthe callod Admina'sis. which is lunar, occurs in tho duration of $32 \frac{1}{2}$ sAURA (solar) months found by dividing the lunar month by the difference between this and the saura month. From

- [Here a solar year consists of 865 days, 15 GHATIXḰs, 80 PALAs, 224 vipalas, i. 0.365 d .6 h .12 m .9 s . and in 8úryasiddea'mita the length of the year is 365 d. $15 \mathrm{g}$.81 p. 81.4 v. i. o. 865 d. 6 h. 12 mm . 36. 66 s.-B. D.]
[\dagger That lunar month which onds, when the Sun is in Meseas stellar Aries is called chaitra and that which terminates when the Sun is in veiseabia stellar Thurus, is called Varsixira and so on. Thus, the lunar months correaponding to the 12 stellar signs Mesira (Aries) Verisinabiat (Taurus) Mitiona (Gemini) Karia (Oancor), Sinha (Leo), Kanya' (Virgo), Tula' (Libra), Vris'ohika (Scorpio), Drand (Sagittarius), Makara (Capricormis), Kdiphit (Aquarius) aid Mina (Piscos), ato Cifattra, Vaisia'rima, Jymbitita, a'bita'pua dora'vaná,
 Piralausa. If two lunar inonths terminate when tho Sun is only in one stellar sign, the scoond of theso is conllod Anmima'sa an additivo month. Tho 30th part of a lunar month is called Tithi (a lunar day).-B. D.]
this, the number of the additive months in a kalpa may also be found by proportion.*

11. As a mean lunar month is shorter in length than n mean saura month, the lunar months are thereforo moro in number than the saura in a ralpa. The difference between tho number of lunar and saura months in n kales is callod by astronomers the number of Adhimksas in that period.

The reason of subtractive day called Avaya.

12. An avama or subtractive day which is sKvana occurs in $61 \frac{1}{12}$ tirilis (lunar days) found by dividing 30 by the difforence betwoen the lunar and savana month. From this, the number of avamas in a yuas may be found by proportion. \dagger
13. \ddagger If the AdHimisas are found from sadra days or months, then the result found is in the lunar months, [as for instance in finding the Aharyana. If in the saura days of a kalpa : aro

[^15]so many Λ dimmasas : : thon in given numbor of solar days; how many Adhimsisas?] If the Adhimisas are found from lunar days or mouths, then the result is in saura months, and the remainder is of the like denomination.
14. [In liko mannor] the avamas or subtractive days if found from lunar days, are in st́vana time: if found from savana time they are lunar and the remainder is so likewise.
Δ question.
15. Why, 0 Astronomor, in find-
ing the Anargana do you add saura mouths to the lumer months Charrea \&c. [which may havo elapsed from the commencement of the current year]: and tell me also why the [fractional] remainders of AdHinksas and Avapas days aro rojocted : for you know that to give a truo result in using the rule of proportion, remainders should be traken into account?

Reason of omitting to include the Adminísa s'rsea in finding the Auargana.
16.* As the lunar month ouds at the change of the Moon and the suara month terminates when the Sun enters a stcllar sign, the accumulating portion of an Adhimasa always lics after ouch now Moon and bofore the Sun cutors tho sign.

[^16]17. Now tho number of tirnis (lunardnys) olapsod sinco the change of the Moon and supposed as if savra, is added to the number of saura days [found in finding the abargana]: but as this number exceeds the proper amount by the quantity of the Adimasa-sírsha therefore the Adhimás-sesina is omitted [to be added].
18. [In the same manner] there is always a portion of a Avama-s'resta between the time of sun-rise and the end of the [preceding] tithi. By omitting to subtract it, the Aharanna is found at the time of sun-rise: if it were not omitted, tho Aharasina would represent the time of the ond of the tithi [which is not required but that of the sun-rise].

Reason of the correction called the UdaySxtara xarma.
$19,20,21$ and 22 . As the true, terrestrial day is of variable length, the arargana has been found in mean torrostrial days: tho placos of tho plancts found ly this Airargana when rectifiod by tho amount of the corroction aillod tho Ubayderiara whothor additive or sulberwitive will to found to be at the time of sun-rise at Lank . * The ancient 2
If these additive months with their remainder be added to the sAVRA daye
above found, the sum will be the number of lunar days to the end of the BAOBA
days, but we require it to the end of the required TITHI. And as the remainder
of the additive months lies between the end of the TITHI and that of its corre-
aponding savra days, they therefore add tho whole number of Adul. yifisas just
found to that of the savea days omitting the remainder to find the lunar duys
to the end of the required rithi. Moreover, to make these lunar days terrestrial,
they dotermine Arame subtractive days by the proportion such as follows.
As the number of lunar days in a KALPA
z the number of subtractive days in that period
8: the number of lunar days just found
t the number of AVAMA elapeed with their remainder.

If these ATAyAs be subtracted with their remainder from the lunar daye, the difierence will be the number of the Avaya days elapsed to the end of the required TITEI; but it is required at the time of sun-rise. And as the remainder of the subtractive days lies between the ond of the mITII and the sun-rise, they therefore subtraot the Avacis above found from the number of lunar days omitting their remainder i. o. Avama.sergis. Ihus the Amargana itself beoomes at the sun-rise,-B. D.]

- [If the Sun been moving on the eqninoctial with an equal motion, tho terrestrial day would have been of an invariable length and consequently the Sun would have reached the horison at Lamid at the end of the Aharasina which is an enumeration of the days of invariable length that is of the mean terrestrial daje. But the Bun moves on the eoliptic whose equal parts do not

Astronomers have not thus rectified the places of the planets by this correction, as it is of a variable and small amount.

The difference betweon the number of asus of the right ascension of the mean Sun [found at the end of the Aharanan] and the number of asus equal to the number of minutes of the mean longitude of the Sun [found at the same time] is the difference between the true and mean aharganas.* Multiply this differonce by the daily motion of the planet and divide the product by the number of asus in a nycthemeron. \dagger The result [thus found] in minutes is to be subtracted from the places of the planets, if the asus [of the right ascension of the mean Sun] fall short of the kalis or minutes [of the moan longitude of the Sun], otherwise the result is to be aclded to the places of tho planets. Instead of the right ascension, if oblique ascension be taken [in this calculation] this Udayantara correction which is to be applied to the places of the planets, includes also the chara correction or the correction for the ascensional difference.

Reason of the correction 23 . The places of the planets callod tho D $\mathrm{Ha}^{\circ} \mathrm{A}^{\prime}$ NTARA. which aro found boing roctifiod by this Udaykntara correction at the time of sun-rise at Lanke may be found, boing appliod with tho Deskninra correction, at the time of sun-rise at a given place. This Desentara correction is two-fold, one is east and west and the other

[^17]is north and south. This north and south corroction is called chara.
24. The line which passes from Lanké, Ujuayiní, Kurumshetra and other places to Merd (or the North Pole of the Earth) has been denominated the Madiyarekiá mid-line of the Earth, by the Astronomers. The sun rises at any place east of this line before it rises to that line : and after it has risen on the line at places to its west. On this account, an amount of the correction which is produced from the difference botween the time of sun-rise at the mid-lino and that at a given place, is subtractive or additive to tho places of tho planets, as the given place be east or west of the mid-line [in ordor to find the places of the planets at the time of sun-rise at the given place].
25. As the [small] circle which is described around Maru or North Pole of tho Larth, at the distance in Yojanas reckoned from Mard to given place and produced from co-latitude of the place [as mentioned in the verso 50th, Chnpter 111.] is called rectified circumference of the Earth (parallel of latitude) [at that place] therefore [to find this rectified circumference], the circumference of the Earth is multiplied by the sine of colatitude [of the given place] and divided by the radius.

End of 4th Chapter called Madhya-Gati Vabana.

[^18]
CHAPTER V.

On the principles on which tho Rules for finding the true places of the Planets are grounded.

On the canon of sines.

1. The planes of a Sphere are intersected by sines of bhojs and котi,* as a picce of cloth by upright and transverse threads. Bcforo describing tho spheric, I shall first explain the canon of sines.
2. Take any radius, and suppose it the hypothenuse (of a right-nuglod trinuglo). Tho sino of biuja is tho baso, and the sine of котI is the square root of the difference of the squares of tho radius and the base. The sines of degrees of bruja and котi subtracted separately from the radius will be the versed sines of kopi and bhojs (respectively).
[" Tho biruja of any given are is that arc, less than 90°, the sine of which is equal to the sine of that given are, (tho consideration of the positiveness and negntion of tho sino is hero neglectorl). For this reason, tho mituJa of thant aro which terminates in tho odd quadrants i. e. tho 1st and 8rd is that part of the given are which falls in tho quadrant where it torminates, and tho Butad of tho nro which culs in tho ovon quadrnits, i. o. in the 2 and and 1th, is that aro which is wanted to complete the quadrant where the given are is endod.

The xoft of any arc is the complement of the Berojs of that arc.
Let the 4 quadrants of a circle ABCD be successively $\mathbf{A B} B$ C, C D and 1) Δ, then the nirojas of thoneres $A P_{1}, A 13 V_{g}, A C P_{3}$
 $A V_{A}$ and tho complements of these mitijas aro tho arcs BP_{1},
 1. D.]

3. The versed sine is like the arrow intersecting tho low and the string, or the arc and the sine.*

The square root of half the square of the radins is tho sine of an arc of 45°. The co-sine of an arc of 45° is of the samo length as the sine of that arc.

- These methods are grounded upon the following principles, written by Bia'sicara'ouarya, in the commentary Vabana'-bea'bhya.
(1) Let the aro $\triangle B=90^{\circ}$ and $\mathrm{AO}=$ 450
$\therefore \mathrm{AD}\left(=\frac{1}{2} \mathrm{~B}\right)=\sin .45^{\circ}$; and let $O A$ or $O B=$ the radius (R) then $A 1^{2}$ $=0 A^{2}+O B^{2}=20 A^{2}=2 B^{2}$
$\therefore A B=\sqrt{2 R^{1}}$
and $A D=A B=\sqrt{\frac{R^{2}}{2}}$
orsin. $45^{\circ}=\sqrt{\frac{R^{2}}{2}}$.

(2) It is ovident and atatod also in tho Inisa'vatr, that tho siilo of n rogulur hexagon is equal to the radius of its circumscribugg circle (i. o. cli. $60^{\circ}=\mathrm{R}$). IIence, $\sin .80^{\circ}=\frac{1}{8} \mathbf{R}$.
(3) Let A. B be the half of a given are A P, whose siue P M and versed sine A M are given. Then
$A P=\sqrt{P M^{2}+A M^{2}}$
and $\frac{1}{8} A P=A N=\sin . A B$
$\therefore \sin . A B=\frac{1}{2} \sqrt{P M^{2}+A M^{\prime}}$
(4) The proof of the last method by Algebra $0_{0}=\mathbf{R}$ - versod sino
$\therefore \cos ^{2}=\mathbf{R}^{2}-2$ R. $\boldsymbol{v}+\boldsymbol{v}^{2}$
subtracting both sides from ${ }^{\prime}$ ',

$R^{2}-0^{2}=2 R . v-v^{2}$
or $\sin ^{2}=8$ R.v- v^{2}
adding v^{2} to both sidos
$\sin .^{3}+p^{\prime}=2$ R.
and \ddagger (sin. $\left.{ }^{2}+v^{2}\right)=\frac{1}{2}$ R.。
oxtrucling tho squaro roots,

$$
\frac{1}{2} \sqrt{\sin ^{2}+\theta^{2}}=\sqrt{\frac{1}{2} \cdot 0}
$$

but by the preceding method

1. $\sqrt{\sin ^{2}+v^{2}}=$ the aine of half the given aro;
$\therefore \sin . \frac{1}{t}$ are $=\sqrt{\frac{1}{2} \overline{\text { R. © }}-\text { B. D.] }}$
2. Half the radius is the sino of au arc of 30° : The co-sine of an arc of 30° is the sine of an arc of 60°.

Half the root of tho sum of the squares of the sine and versed sine of an arc, is the sine of half that arc.
5. Or, the sine of half that arc is the square-root of half the product of the radius and the versed sine.

The sines and co-sines of the halves of the arcs before found mny thus be found to any extent.
6. Thus a Mathematician may find (in a quadrant of a circle) $3,6,12,24 \& c$., sines to any required extent.*

Or, in a circle described with a given radius and divided into 360°, the required sines may be found by measuring their lengths in digits.

Reason of correction which is required to find the true from the mean place of a planet.
7. \dagger As the centre of the circle of the constellation of the Zodiac coincides with the centre of the Earth:

[^19]and the centre of the circle in which the planet revolves does not coincide with the centre of the Earth: the spectator, therefore, on the Earth does not find the planet in its mean place in the Zodiac. Hence Astronomers apply the correction called bhuja phala to the mean place of the planet [to get the true place].

Modo of illustration of the above fact.
8. On the northern side of a wall running due oast and west, let the teacher draw a diagram illustrative of the fact for the satisfaction of his pupils.

A verse to encourage those who may be disposed to dospond in consequence of the difficulties of the scienco.
9. But this science is of divine origin, revealing facts not cognizable by the senses. Springing from the
the concentrio circle as eocond oxcentric of theso fire planets, take another circle of the samo size and of the same centre with the Carth as concentric, and in order to find the place where the planet revolring in the 2nd excentric appears, in this concentrio, they apply a correction culled s'fahma-piala, or 2nd equation of the centre, to the mean place corrected by the lat equmtion. The manda-apasira planct, whon correctul by tho 2 mid cyunion is cullud s'pasirta, or true planet, the Zndexcentrio, s'fanma-phativaitta, and its furthest point from the centre of the Earth, g^{\prime} IGHROOEOE the 2nd higher Apsis.

If a man wishes to draw a diagram of the arrangoment of the planets according to what we have briefly stated here, he should firat describe the excentrio circle, and through this excentrio the concentric, and then he may determine the place of the MASDA-sPABETA planet in the concentric thus described. Again, haring assumed the concentric as 2nd excentric and desoribed the concentrio through this 2nd excentric, he may find the place of the true planet. This is the proper way of drawing the diagram, but astronomers comunonly, laving first described the concentrio, and, through it, the oxcentrio, flind the corrected mean place of the planet in the concentric. After this, having desoribed the 2nd exoentric through the same concentrio, they find tho truo placo in tho concentric, through the corrected mean place in the same. These two modes. of constructing the diagram diffor from each other only in the reapeot, that in the former, the concentric is drawn through the excentrio circle, and in the latter, the oxcentric is drawn through the concentric, but this aan casily bo understood that both of these modes are equivalont and produce the same rosult.

In order to find the lat and 2nd equations through a different theory, astronomers asame that the contre of a small circle called wichooiona-virtia or opicyolo, rovolves in the concentrio circle with tho mean motion of the planot and the planet revolves in the epicycle with a revorse motion equal to the inean motion. Bia'seaka'oua'bra, himself will show in the sequel that the motion of the planet is the same in both theee theories of excentrios and epicgcles.

It is to be observed here that, in the oase of the planets Murs, Jupiter and Saturn, the motion in the excentric is in fact their proper revolution, in their orbits, and the revolution of their s'ianmoorcia, or quick apoges, corresponds to a revolution of the Buu. But in the case of the planets Mercury und Venus, the revolution in the excentric is performed in the sume time with the Sun, and the revolutions of their s'iersochoras are in fact their proper ruvolutions in their orbits.-B. D.]
suprome Brahma himself it was brought down to the Earth by Vasisifita and other holy Sages in regular succession; though it was deemed of too secret a character to be dirulged to men or to the vulgar. Hence, this is not to be communicated to those who revile its revelations, nor to ungrateful, evil-disposed and bad men : nor to men who take up their residence with its professors for but a short time. Those professors of this science who transgress these limitations imposed by holy Sages, will incur a loss of religious merit, and shorten their days on Earth.

Construction of a diagram to illustrate the excontric theory.
10. In the first place then, describe a circle with the compass opened to the length of the radius (3438). This is called the raksinvritta, or concentric circle; at the centre of the circle draw a small sphere of the Earth with a radius equal to $\mathrm{I}_{13}{ }^{\frac{1}{2}}$ th* of the mean daily motion of the planet.
11. In this concentric circle, having marked it with 360°, find the place of the higher apsis and that of the planet, counting from the 1st point of stellar Aries; then draw a (porpendicular) diamoter passing through the centro of the Earth and the highor apsis (which is called иснснa-reкн\{, tho line of tho apsidos) aud draw another transvorse diameter [perpendicular to the first] also passing through the centre.
12. On this line which passes to the highest apsis from the centre of the Earth, take a point at a distance from the Earth's centre equal to the excentricity or the sine of the greatest equation of the centre, and with that point as centre and the radius [equal to the radius of the concentric], desoribe the prativilita or excentric circle; the dchcea-berek answers the like purpose also in this circle, bat make the transverse diameter different in it.

[^20]13 and 14.* Where the uchcha-rekhe perpendicular diameter (when produced) cuts the excentric circle, that is the

[In fig. 1st let © be the centre of the concentric circle A B OD, r the place of the stellar Aries, A that of tho highor apsis, and M that of tho moan planot in it: then NA will bo tho voncha-menia (ino lino of tho npeidey). Agnin let E O bo tho oxcontricity and II F IJ G tho oxcontrio which hus O for its centre ; thon $\mathbf{H}, \mathbf{r} \mathbf{P}$, will be the places of the higher apeis, the stellar Aries and the planet respectively in it. Hence $\mathrm{H} \mathbf{P}$ will be the XPNDRA; P K the sine of the Eendra; P I the co-sine of the Eindra.
The rempra which is more than 9 signs and less than 8 is called mriandr (i. e. that which terminates in the six signs beginning with Capricornus) and that which is above 8 and leas than 9 is callod rasiyadi (i. e. that which ends in the six signs beginning with Cancer).

Thus (Fig. 1) that which terminatos in G H F is mmandi yrmpra, and that which ends in FIG is Kareya'di-B. D.]
place of tho highor apsis in it also. From this mark the first stellar Aries, at the distance in degree of the higher apsis in antecedentia: the place of the planet must be then fixed counting the degree from the mark of the 1st Aries in the usual order.

The distance between the higher apsis and the planet is call ed the rendra.* The right line let fall from the planet on the uchcian-rekilk is the sine of buuja of the kendra. The right line falling from the planet on the transverse diameter is the cosine of the kendra, it is upright and the sine of bioja is a transverse line.

The principlo on which the rulo for finding the amount of equation of centre is based.
15. As the distance between the diameters of the two circles is equal to the excentricity and the co-sine of the Kendra is above and below the excentricity when the kendra is mrigkdi and karkymdi (respectively). \dagger

[^21]4 [In (lig. 1) P K is the spirota koti and P If tho karen (tho hypolhonuan) which cuts the consentric at II'. Hence the point I' will be the apparent place of the planet and 'I M the equation of the centre.

This equation can be detorminod as follows.
Draw M a perpendicular to FE I', it will be the sine of the equation and the triangle $\mathbf{P} \mathbf{M}$ n will be similar to the triangle $\mathbf{P} \mathbf{E} \mathbf{K}$.
$\therefore \mathbf{P E}: \mathbf{E K}=\mathbf{P M}: \mathbf{M} \boldsymbol{m}$
hence $M m=\frac{\text { P M.EK }}{\mathbf{P} \boldsymbol{K}}=$ sine of the equation $;$

$$
=\frac{\mathbf{K O} \cdot \mathbf{E K}}{\mathbf{P K}}, \text { for } \mathbf{P} \mathbf{M}=\mathbf{I} \mathbf{K}=\mathbf{K} \mathbf{O}
$$

Now, let $k=$ Kgidra, $a=$ the distance between the centres of the two circles excentric and concentric, $x=$ sine of the equation, and $k=$ hypothenuse : then the spruta rofi $=\cos . k \pm a$, according as the Kendra is mrigadi or

EAREYADI, and $h=\sqrt{\sin \cdot{ }^{\circ} k \pm(\cos k \pm a)^{2}}$
heuce by substitution

$$
x=\frac{a \cdot \sin . k}{k}=\frac{a \cdot \sin \cdot k}{\sqrt{\sin ^{2} k+(\cos \cdot k \pm a)^{2}}}
$$

16 and 17. Therefore the sum or difference of the co-sine and excentricity (respectively) is here the sPhUTA кoti (i.e. the upright side of a right-angled triangle from the place of the planet in the excentric to the transverse diameter in the concentric,) the sine of the bhoja [of the kRNDRA] is the bhuja (the base) and the square-root of the sum of the squares of the spiluta koti and bhoja is"called karna, hypothenuse. This hypothenuse is the distance between the Earth's centre and the planet's place in the excentric circle.

The planet will bo observed in that point of tho concentric cut by the hypothenuse.

The equation of the centre is the distance between the mean and apparent places of the planet: when the mean place is more advanced than the apparent place then the equation thus found is subtractive; when it is behind the true place, tho equation is additivo.*
The roason for assuming 18. Tho monn planot inoves in its
the mand-spasita planet as
a mean in finding the 2nd
equation.
manda-prativritta (first excentric);
the manda-spashta planet (i. e. whose
mean place is rectified by the first equation) moves in its
s'ighra-prativpitta (second excentric). The manda-spashta

[^22]is thercfore hore assumed as the mean planot in the second process (i. e. in finding the second equation).*

The renson for the invention of the higher apsis.
19. The place in the concentric own excentric is seen by observers is its true place. To find the distance between the true and mean places of the planet, the higher apsis has bcen inserted by former Astronomers.
20. That point of the oxcentric which is most distant from the Earth has been denominated the higher apsis (or UCHCHA) : that point is not fixed but moves; a motion of the higher apsis has therefore been established by those conversant with the science.
21. The lower apsis is at a distance of six signs from the higher apsis: when the planet is in either its higher or lower apsis, then its true place coincides with its mean place, because the line of the hypothenuse falls on the mean place of the planet in the concentric.
22. As the planet when in the higher apsis is at its greatest distance from the Earth, and when in the lower The enumo of varintion of \quad прsis atits least dishunco, thoroforo its npparent size of planel's diso. dise appenrs small and largo accordingly. In liko mannor, its dise appou's smabll and largo accordingly as the planet is near to and remote from the Sun.
23. To prevent the student from becoming confused, I have separately explained the proof of finding the equation by the Prativritta Biangi of the diagram of the excentric. I shall now proceed to explain the same proof in a different manner by the diagram of a nf́chochicha-vritta (epicycle).

[^23]Construction of Diagram to illustrate the thoory of epicycle.
24. Taking the mean place of the planet in the concentric as the centre, with a radius equal to the excentricity of the planet, draw a circle. This is called níciochcua vritta or epicycle. Then draw a line from the centre of the Harth passing through the mean place of the planct [to the circumference of the epicycle].
25. That place in the epicycle most distant from the centre of the Earth, cut by the line [joining the centre of the Earth and mean place of the planet] is supposed to be the place of the higher apsis : and the point in the epycicle nearest to the Earth's centre, the lower apsis. In the epicycle draw a transverse line passing through the centre of it [and at right-angles to the above-mentioned line which is called here ochcha-rekhí].
26. As the mean planet revolves with its kendra-aati (the motion from its higher apsis) in the lst and 2nd epicycle marked with the 12 signs and 360 dogreos towards tho reverse signs, and according to the order of the signs respectively from its higher apsis.
27. Mark off therefore the places of the first and second enedras or distances from their respective higher apsides in the manner directed in the last verse: the planet must be fixed at those points. [Here also] The (perpondicular) lino from the planet to the vchcra-rekick is the sine of the buuja of the Kendra : and from the planet on the transverse line is the cosine [of the Kendra].* (See note next page.)

> To find the hypothenuse 28 and 29. The bhoja phala and and the equation of centre. Koti pirala of tho kempra which are found [in the Ganitídiýía] are sine and cosine in the epicycle. As the kofi phala is above the radius (of the concentric) in mbiandi kendra and within the radius in karkyadi-kendra, the sum and difference, therefore, of the koti phala and the radius is here the sphuta-koti (upright line), the bhuja phala is the bhuja (the base) and the karna hypothenuse (to complete
the right-angled triangle) is the line intercepted between the centre of the Earth and the planet. The equation of the centre is here the arc [of the concentric] intercepted between

- Note on verses from 24 to 27.

[In 6ig. 2, let ABOD be the concentric, T the place of the atellar Aries, Et the centre of the Earth, M the mean place of the planet in the ooncentric, $k f l g$; the Epicycle, the place of the higher apsis in it, Ef the vorcha-rerias \boldsymbol{l} the place of the lower Δ psis, \mathbf{P} that of the planet, $\boldsymbol{\&} \mathbf{P}$ the gexpra, $\mathbf{P} \boldsymbol{k}$ the sine of the kendra and P ithe cosine of it.

The sine and co-sine of the ERNDRA in the escentric, reduced to their dimensions in the opicyclo in parts of the radius of the concentric, are unmed beuja-piala and roti-phala respectively in the Ganitidizíya. That is

At the radius or $\mathbf{3 6 0 ^ { \circ }}$ of the concentrio
: the sino and cosine of the xerndra in the excentric
: : excentricity or the periphery of the epicycle
: bifiJa-pifila and copi-pHala respectively.
Therefore the bhoja-piaina and coti-piala must be equal to the sine and cosine of the Empdra in the epicycle.-B. D]
the mean place of the planet and the point cut by the hypothenuse. The equation thus found is to be added or subtracted as was before explained.*
30. The planet appears to move forward from mandochcha,

Construction of the mixed diagrams of the excentrio and epicycle. or 1st higher apsis, in the excentric circle with its kendra-gati (the motion from its mandochсна) and in the order of the signs and to the East: From its si'ahrochcha, 2nd higher apsis, it moves in antecedentia or reversely, as it is thrown backwards.
31. When the epicycle however is used, the reverse of this takes place, the planet moving in antecedentia from its lst higher apsis and in the order of the signs from its 2nd higher apsis. Now as the actual motion in both cases is the same, while the appearances are thus diametrically opposed, it must be admitted therefore that these expedients are the mere inventions of wise astronomors to nscortain the anount of equation.

[^24]found before by the theory of the excentric in the note on the verses 16, 16 and 17.-B. D.]
32. If the diagrams (of the excentric and epicycle) be drawn unitedly, and the place of the planet be marked off in the manner before explained, then the planet will necessarily be in the point of the intersection of the excentric by the epicycle.
33. [In illustration of these opposite motions, examine an oil-man's screw-press.] As in the oil-man's press, the wooden press (moving in tho direction in which the bullock fastened to it goes) moves (also itself) in the opposite direction to that in which the bullock goes, thus the motion of the planet, though it moves in the excentric circle, appears in antecedentia in the epicycle.
34. As the centre of the lst epicycle is in the concentric,

Explains why the 5 minor let the planet therefore move in the planets require both the let and 2nd equations to concentric with its mean motion: In the concentric [at that point cut by the first hypothenuse] is the centre of the síaHRA níchochcha, vpitta or of the 2nd epicycle: In the second or sianra epicycle is found the true place of the planet.
35. The first process, or process of finding the 1st equation, is used in the first place, in order to ascortain the position of the centre of the sígira níchochcha veritta or of the 2nd epicycle, and the 2nd process, or the process of the 2nd equation, to ascertain the actusl place of the planet. As these two processes are mutually dependent, it on this account becomes necessary to have recourse to the repetition of these two processes.

36 and 37. Some say that the hypothenuse is not used in the 1st process, because the difference (in the two modes of computation) is inconsiderable, but others maintain

> Explains reacon of omission of hypothenuse in the MANDA process. that since in this process the periphery of the first epicycle being multiplied by the hypothenuse and divided by the radius becomes true, and that, if the hypothenuse then be used, the result is the same as it was before, therefore the hypothenuse is
not employed. No objection is to be made why this is not the case in the 2nd process, because the proofs of finding the equation are different here.*
38. As no observer on the surface of the Earth sees the

Roason of Natixarafa. planet moving in the excentric, deflected from his zenith, in that place of the concentric, where an observer situated at the centre of the Earth observes it in the eastern or western hemisphere, and at noon both observers see it in the same place, therefore the correction called Natakarma is declared (by astronomers). The proof of this is the same as in finding the parallax. \dagger

[^25]

39. The mean motion of a planet is also its truo motion

Explains where the mean and true motions of all the planets coincide. when the planet reaches that point in the excentric cut by the transverse diameter which passes through the centre of the concentric: and it is when the planet is at that point that the amount of equation is at its maximum. [Lalla has erroneously asserted that the mean and true motions coincide at the point where the concentric is cut by its excentric.]*
40. Having made the excentric and other circles of thin Manner of observing the pieces of bamboo in the manner exretrogression \&c. of Planets. plained before, and having changed the marks of tho places of tho planet and its sílimocucua 2 nd highor apsis with thoir daily motions, an astronomer may quickly show the retrogressions, \&c. \dagger

[^26]41. The word kendra (or кevtpor) means the centre of a

The reason of the invention of the appellation of remdra. circle : it is on that account applied to the distance between the planet and higher apsis, for the centre of the nichochcha-vritta or epicycle, is always at the distance of the planet from the place of the higher apsis.
42. The circumference in yojanas of the planet's orbit Spiota-xaxbia or cor- buing multipliod by the s'iginra-karna rectod orbit.
(or 2nd hypothenuse), and divided by tho radius (31.38) is splurin-каквык (corrected orbil). 'Tho planet is (that moment) being carried [round the earth] by the pravaina wind, and moves at a distance equal to half the diameter of the sphuta-kakshí from the earth's centre.
43. When the sun's manda-phala i. e. the equation of the Reason of Buja'ntaua centro is subtractive, the apparent or correction. real time of sun-rise takes place before the time of mean sun-rise: when tho equation of tho coutre is additive, the real is after the mean sun-rise, on that account the amount of that correction arising from the sun's mandaphala converted into asus* of time has been properly declared to be subtractive or additive.
44. Those who have wits as sharp as the sharp point of the inmost blade of the dorbha or darbha grass, find the subject above oxplainod ly dingrans, Ω matter of no difliculty whatover : but men of weak and blunt understanding find this subject as heavy and immovable as the high mountain \dagger that has been shorn of its wings by the thunderbolt of Indra.

Find of Chnpter V. on the principles on which the rules for finding the true places of tho planets aro grounded.

[^27]
CHAPTER VI.

Called Golabandha, on the construction of an Armillary Sphere.

1. Let a mathematician, who is as skilful in mechanics as in his knowledge of the sphere, construct an armillary sphere with circles made of polished pieces of straight bamboo; and marked with the number of dogrees in the circle.
2. In the first place, let him mark a straight and cylindrical dhruva-yashti, or polar axis, of any excellent wood he pleases : then let him place loosely in the middle of it a small sphero to represent the carth [so that the axis may move freely through it]. Jet him then firmly secure the spheres beyond it of the Moon, Mercury, Venus, the Sun, Mars, Jupiter, Saturn and the fixed stars: Beyond them let him place two spheres called khagola and driggola unconnected with each other, and fastened to the hollow cylinders [in which tho $n x i s$ is to lo insortod].*
[Description in detail of the fact above alluded to.]
3. Fix vertically the four circles and another circlo callod

The prime vertical, the meridian and the ronavirsTA8.
horizon transversely in the middle of them, so that one of those vertical circles called Samamanpala, prime vertical, may pass through the east and west points of the horizon, the other called yfmyotiara-vrítia, meridian the

[^28]north and south points, and the remaining two called kosivrittas the N. E. and S. W. and N. W. and S. E. points.
4. Then fix a circle passing through the points of tho

The UNMAKDALA or six o'clock line. horizon intersected by the prime vertical, and passing also through the south and north poles at a distance below and above the horizon equal to the latitude of the place. This is called the unmanpala, or six o'clock line, and is necessary to illustrate the increase and decrease in the length of the days and nights.*
5. The equinoctial (called nápí-valaya), marked with 60 ghatis, should be placed so as
to pass through the east and west points of the horizon, and also to pass over the meridian at a distance south from the zenith equal to the latitude, and at a distance north of the nadir also oqual to the latitudo of tho placo [for which the sphere is constructed].
6. Jat tho aximuth or vortical civelo bo noxt allanehod within the other circles, fixed by a pair of nails at the zenith and nadir, so as to revolve freely on them : [It should be smaller than the other circles so as to revolve within thom]. It should be capable of being placed so as to cover the phanct, wherover it may happen to bo.
7. Ouly one azimuth circle may bo used for all tho plancts; or else eight azimuth circles may be made, viz. one for each of the 7 planets and the 8 th for the nonagesimal point. The aximuth circle for the nonagesimal point is called the drik-shbpa-vilitta.

[^29]8. Lat two hollow cylindors projoct boyond tho two poles

Tho Driggola. north and south of the khagola celestial sphere, and on these cylinders let the skilful astronomer place the dpiggoun double sphere as follows.
9. When the system of the rhagola, celestial sphere, is mixed with the ecliptic, and all the other circles forming the BunuOb, (which will bo presontly shown) it is thon callod driggola, double sphere. As in this the figures formed by the circles of the two spheres khagola and bhagola are seen, it is therefore called dpiggola double sphere.*

THE BHAGOLA.
10. Let two circles be fimnly fixed on the axis of the poles answering to the meridian and horizon (of the khagola); they ore called the adidra-vpittas, or circles of support: Let the equinoctial circle also be fixed on them marked with 60 ghatis like the prime vertical (of the khagola).
11. Make the ecliptic (of the same size) and mark it with
'I'm BurlipLis:. 12 signs; in this tho Sun movas: nnd also in it rovolvos tho l'merth's slamen at at distanco of 6 sigus from tho Sun. 'Iho KIRANTI-1'Ryn or verual equinox, moves in it conbrury to the order of the sigus : 'I'he spashfa-patas [of the other planets] have a like motion : the places of these should be marked in it. \dagger

[^30]12. Let the ecliptic be fixed on the equinoctial in the point of vernal equinox kránti-páta and in a point (autumnal equinox) 6 signs from that: it should bo so placed that the point of it, distant 3 signs eastward from the vernal equinox, shall be 24° north of the equinoctial, and the 3 signs westward shall be at the same distance south from the equinoctial.
13. Divide a circle called mshepa-vpitta representing the orbit of a planct into 12 signs and mark in it tho places of the spasitapatas, roctified nodes, as has been beforo prescribed [for tho ecliptic]. Then this circle should bo so placed in connection with the ecliptic as it has been placed in connection with the equinoctial.
14. The ecliptic and the kshepa-vpitta should be so placed that tho latter may intersoct tho formor at tho [roctificd] ascending and descending nodes, and pass through points distant 3 signs from tho nsconding noilo cast and west at a distance from the ecliptic north and south equal to the rectified greatest latitude of the planet [for the time].
15. The greatest (mean) latitudes of the plancts being multiplied by the radius and divided by the siahra-karna

[^31]second hypothenuso becomos spashti, rectified. The кsierinvritra, or circles representing the orbits of the six planets, should be made separately. The Moon and the rest revolve in their own orbits.*

- [As the PA'TA of the Moon and her true place lie in her concentric, the sum of these two, which is called hor virsirpa-mendea or the argument of latitude, must be measured in the anme circle, and hor latitude, therefore found through her viksibpa-gendra, will be as seen from the centre of her concentric i. e. from the centre of tho barth. But the ra'ta of any other planet and its mandasrasura place (which is its helincontric place) lie in its 2nd oxcentric, therefore its latitude, determined by means of its vik8BEPA-EREDEA, which is equal to the sum of its mANDA-sPAsBTA place and PA'TA and measured in the same eircle, will be such as seen from the centre of its 2nd excentric and is called its mean latitude (which is equivalent to the heliocentric latitude of the planet).

As in Fig. 1, let N E be the quartor of tho ochptic, $N \mathbf{O}$ lint of the 2 ind excontric, N the nosle nud 1 ' the planet. Suppose () As mud l'p (paris of grest circles) to bo drawn from O and \mathcal{P} prpendicukily to the plano of the celiptic : then O E will be the greatest lati-
 tude and $\mathbf{P} p$ the latitude of the planet at \mathbf{P}, by which a spectator at the centre of the 2nd excentric nnd not at the cuntre of the Earth, will see the planet distant from tho celiptic. 'Ihis latitudo, therefory, is callod a mean latitude which can be found as follows,

$$
\sin N O \sin O \mathrm{E}: \cdot \sin \mathrm{NP}: \sin P p \text {, }
$$

consegnenily, in order to determine $\mathbf{P} p$, it is noccssary to know proviously $\mathbf{O} \mathbf{E}$, tho grentone intitiulo nuld N P, the distnico of the phinco of tho planet from tho norlo, which distmice is ovidently oqual to tho visismera-kendera that is, to tho sum of tho MANDA-8Pasura place of the planet and the mean place of the node. Now the latitude of the planet as seen from the centre of the Earth is called its true latitude. This true latitude can be found in the following manner,

Let E be the cenire of the earth, \mathbf{O} that of the 2nd excentric, P the manda spasura place of the phanct in it : then fif 1 will be the 2 and hypothenuse which is supposed to cut tho concentrice nt 1 : then A will be the trie place of the planet in the concoutrio. Again let $\mathbf{P} q$ be a circle with the centro 0 , whose plane is perpendicular to the eclipLic plano and $A \quad b$ another circle with the centro 15 whose place is also perpendicular to the same plane, then $\mathbf{P q}$ will be the mean latitude of the planet and $A \quad \frac{d}{b}$ will be the true. Let $P p$ and Δa lines be porpericlicularly drawn to tho plane of tho cecliptic, thicse lines will also bo at right angles to the line If p : then $P p$ will be lie sine of the mean latitude $\mathcal{P} q$ and A a that of the true latitude $\mathbf{\Lambda} b$. Now by the similar triangles $\mathbf{f} \mathbf{P} \boldsymbol{p}$ and $\mathrm{K} A$ a,

$$
\begin{aligned}
& \mathbf{E P}: \mathbf{P}_{\boldsymbol{p}}: \mathbf{: E A : \mathbf { A }} \mathbf{A} ; \\
& \therefore \mathbf{A} a=\frac{\mathbf{A} \cdot \mathbf{P}}{\mathrm{E}} ;
\end{aligned}
$$

16. The declination is an arc of a groat moridian circle:

Declination and latitude. cutting the equinoctial at right angles, and continued till it touch the ecliptic.

$$
\begin{aligned}
& \text { or the sine of the true latitude }=\frac{R \times \operatorname{sine} \text { of the moan latitude }}{h} \\
& \text { but, the slne of the mean latitude }=\frac{\sin 0 \mathrm{E} \cdot \sin \mathrm{NP}}{\mathrm{R}}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { by subetitution } \\
& \text { the sine of the true latitude }=\frac{R}{h} \times \frac{\sin 0 \mathrm{E} \cdot \sin \mathrm{NP}}{R} \\
&=\frac{\sin 0 \mathrm{~F} \cdot \sin \mathrm{~N} P}{h}
\end{aligned}
$$

As the latitude of the planet is of a smaller amount, the are of a latitude it, therefore taken in the Siddiantas instead of the sine of the latitude.
$0 \mathrm{E} . \sin \mathrm{N} P$
Hence, the true latitude $=\frac{0}{k}$,
that is, the sine of the argument of latitudo multiplied by the groatost latitude and divided by the 2nd hypothonuse is equal to the true latitude of the planet.

Now in the Bragora, a circle should be so fixed to the ooliptio, that the formior inny intorsoct the lattor at the grabura-rifra aud tho point six signs from it, and whose oxtrense north and eouth diatance from the ecliptic may be euch that the distance between the cirole and the ecliptic at the place of the true planet may be equal to the true latitude of the planet. This circle is called the TIMARPALA or Vikshepa-vpitia and its extreme north and south distance from the ecliptic is called the true or rectified extreme latitude of the planet which can be found as follows.

Let N be the spasitaPATA, IN P the VIXsiespargmDra, P p the true latitude, E 0 the true extreme latitude: then
$\sin \mathrm{N} 0: \sin \mathrm{F} 0: s \sin$ $\mathrm{NP}_{\mathrm{a}} \operatorname{ain} \mathrm{P}_{\boldsymbol{p}}$

$$
\therefore \sin \mathrm{FO}=\frac{\sin \mathrm{NO} \cdot \sin \mathrm{P}_{p}}{\sin \mathrm{NP}}
$$

$$
\text { or } \mathrm{E} O=\frac{\mathrm{R} \cdot \mathrm{P}_{P}}{\sin N P}
$$

but if L be taken for the mean extreme latitude the $P \quad p=\frac{L \cdot \sin N P}{h}$

$$
\therefore \mathbf{R O}=\frac{\mathbf{R}}{\sin N P} \times-\frac{\mathrm{L} \cdot \sin \mathrm{~N} P}{\pi}=\frac{\mathbf{R} \cdot \mathrm{L}}{\pi},
$$

This is the mean extreme latitude atated in the Ganitadiyíra multiplied by the radins and divided by the 2nd hypothenuse equals the true or rectified extreme latitude. - B. D.]
celestial latitude is in like manner an arc of a great circle (which passes through the ecliptic poles) intercepted between the celiptic and tho ksirepa-vritta.

The corrected declination [of any of the small planets and Moon] is the distance of the planet from the equinoctial in a circle of declination.
17. The point of intersection of the equinoctial and ecliptic Precession of the equinox. circles is the ERANTI-pATA or intersocting point for declination. The retrograde* revolutions of that point in a Kalpa amount to 30,000 according to the author of the SGrya-siddifinta.
18. The motion of the solstitial points spoken of by MUNJALA and othors is the smme with this motion of the equinox: according to theso authors its revolutions are 199,669 in a Kalea.
19. The place of the KRKNTI-PATA, or the amount of the precession of the equinox determined through the revolutions of the krinti-pata mast be added to the place of a planet; and tho declination thon ascertainod. Tho ascensional difference and periods of rising of the signs depend on the declination : hence the precession must be added to ascertain the ascensional difference and horoscope.
20. Thus the points of intersection of the ecliptic and the orbits of the Moon and other planets are the kshepa-patas, or intersecting points for the ksiepa celestial latitude. The revolutions of the KsIrepi-patas are also contrary to the order of the signs, hence to find their latitudes, the places of the kshbpa-pRtas must be added to the places of the planets (before found).
21. As the manda-spasita planet (or the mean planet corrected by the 1st equation) and its ascending node revolve in tho s'igira-prativpitta or 2nd excentric, hence the amount of the latitude is to be ascertained from (the place of) the manda-spashta planet added to the node found by calculation.

[^32] order of the signs.-L. W.
22. Or the amount of the latitude may be found from the spashta planet added to the node which the síahra-piama 2nd equation is added to or subtracted from accordingly as it was subtractive or additive.*

As the Moon's node revolves in the concentric circlo, the amount of the latitude, therefore, is to be found from the true place of the Moon added to the mean node.
23. The exact revolutions of the nodes of Mercury and Venus will be found by adding the revolutions of their s'farrakrndras to the revolutions of their nodes which have boen stated [in the Ganirsidiysiya]: if it be asked why these smaller amounts have been stated, I answer, it is for greater facility of calculation. Hence their nodes which are found from their stated revolutions are to be added to the places of their s'foira-kendras [to got tho oxact placos of tho nodes]. \dagger
24. To find the mandra [of any of tho planets] the place of the planot is subtractod from tho sifamocucua: thon tako

[^33]the kindmra with the PKTA added [to get the exact amount of the PATA or node] and let the place of the planet be added theroto, [we thas get the vikshepa-kendra or the argument of the latitude of Mercury or Venus]. Therefore from the s^{\prime} fahrochchas of these two planets with the patas added, their latitudes are directed by the ancient astronomers to be found.*

25 and 26. 'The pATAS or nodes of these two planets added to the s'ighrochcuras from which the true places of the planets have been subtracted, become spashita or rectified. It is the s'pABHTA-PATA which is found in the bHagona (above described).

In the sphere of a planet, take the ecliptic above described as the concentric circle, to this circle the second excentric circle should be attached, as was explained before, and a circle representing the orbit of a planet (and which consequently would represent the real second excentric) should be also attached to the latter circle with the amount of latitude detailed for it. In this latter circle mark off the mean places of tho nodus of tho (superior) plancts, and also mark in it the mean placo of tho nodes of Mercury and Venus addod to their rospective s'farra-kendras. \dagger
27. Next the ahoratra-vrittas or diurnal circles, must be

Diurnal circles called made on both sides of the equinoctial amoz'atra-vpittas. [and parallel to it] at every or any degree of declination that may be required:-and they must all be marked with 60 ahatis: The radius of the diurnal circle [on which the Sun may move on any day] is called DYOJYÁ.

```
- [Let, \(h=\mathrm{s}^{\prime}\) 'farroonoria or the place of 2 d higher apsis.
        \(k=\) the s'falliaderendra.
        \(p=\) the place of the planet.
        \({ }_{n}=P A^{\prime} T A\) or the place of the ascending node.
        and \(N_{0}=\) the exnct \(\mathrm{pa}^{\prime} \mathbf{T} \mathbf{r}\).
    then \(k=h-p ;\) and \(h=k+n=k .-p+n ;\)
\(\because\) viksikpa kempa or argument of latitude of Mercury or Venus \(=\)
        \(N .+p=h .-p+n+p=h+n .-\) B. D. \(]\)
\(t\) [Soe the note on versos 13, 14 and \(15:-\) B. D.]
```

28. From the vernal equinox mark the 12 signs in direct order, and then let diurnal circles be attached at the extremity of each sign.
29. On either side of the equinoctial, threo diurnal circlos should be attached in the order of the signs : these again will answer for the three following signs.

The bhagola has thus been described. This is to be known also as the inecirara-gola, the sphere of a planet.
30. Or in the plane of the ecliptic bind the orbits of Saturn and of the other plancts with cross diameters to support them, but these must be bound below (within) the ecliptic in successive circles one within the other, like the circles woven one within the other by the spider.
31. Having thas secured the bhagola on the axis or yasuri, after placing it within the hollow cylinders on which the khagola is to be fastened, make the biracola revolve :it will do so freely without reforenco to the kirsgola as its motion is on the solid axis. The khagola and drigaola remain stationary whilst the bHagold revolves.

End of Chapter VI. on the construction of an armillary sphere.

CHAPTER VII.

Called Tripras'na-vasane on the Principles of the Rules for resoluing the questions on timo, spuce, aiml divections.

The ascensional difference and its place.

1. The time called chara-kiunda or asconsional difference is found by that arc of a diurnal circlo intercepted between the horizon and the six o'clock line. The sine of that arc is called the sujxa in the diurnal circle: but, when reduced to relative
value in a great circle, it is called charajy \AA or sine of ascensional dilference.*
2. 'Iho horizon, ns seen at the equator, or in a right sphere, is denominated in other places [to the north, or south of the equator] the unmanpala six o'clock line: but as the Sun appears at any place to rise on its own horizon, the difference between the times of the Sun's rising [at a given place and tho oquatorial rogion undor the same meridian] is tho ascensional difforence.
3. When the sun is in the nor-

Deteraination of the question when the ofara correction is additive and whon subtractivo.
thern hemisphere, it rises at any place (north of the equator) before it does to that on the equator: but it sets after it sets to that on the equator. Therefore the correction depending on the ascensional difference is to be subtractod at sunrise of a given place from the place of the planet [at sunrise at the equator] and to be added at sunset to the place of the planet [as found for the sunset at the equator].
4. When the Sun is in the southorn hemisphero the revorse of this takes place, as the part of the unmandala in that hemisphere lies below the horizon. The halves of the sphere north and south of the equinoctial are called the northern and southern hemispheres.

Cuuse of incroase and decrease inl length of days and nights.
5. [And it is in consequence of this asconsional difference that] tho days are longer and the uights shorter (than they are on the

[^34]equator) when the $S u n$ is in the northern hemispliere : and that the days are shorter and the nights longer when the Sun is in the southern hemisphere. For, the length of the night is represented by that arc of the diurnal circle below the horizon, and the length of the day by that arc above tho horizon.
6. But at the equator the days and nights are always of the same length, as there is no unmanpala there except the horizon [on the distance between which, the variation in the length of days and nights depends].

A circumstance of peculiar curiosity, however, occurs in those places having a latitude greater than $66^{\circ} \mathrm{N}$. viz. than the complement of the Sun's greatest declination.

Determination of place and time of porpetual day and night.

7. Whenever the northern declination of the Sun oxcoeds the complomont of tho latitude, thon thero will be porpotual day for such time as that oxcoss continnod; and whon the southern declination of the San shall exceed the complement of the latitude, then there will be perpetual night during the continuance of that excess. On merv, therefore, day and night are each of half a year's length.
8. To the Celestial Beings [on merv at the north pole] the equinoctial is horizon : so also is to the partyas [at the south pole]. For, the northern and southern poles are situated respectively in their zeniths.
9. The Celestial Beings on mard behold the Sun whilst he is in the northern hemisphere, always revolving above the horizon from left to right: but daityas the inhabitants of the southern polar regions behold him whilst he is in the southern hemisphere revolving above their horizon from the right to the left.

Definition of the artificinl day and night and the day aud pight of the pirpis.
10. Thus it is day whilst the Sun is visible, and night whilst he is invisible. As the dotermination of
night and clay is made in regard to men residing on the surface of the Earth, so also is that of the pitris or deceased ancestors who dwell on the upper part of the Moon.
11. As for the doctrine of astro-

The meaning of the fact stated by the astrological profescors or si'neitixas. logers, that it was day with the Gods at yeru whilst the Sun was in the otrarayana (or moving from the winter to the summer solstice) and night whilst the Sun was in the daksiiníyana (or moving from the summer to the winter solstice), it can only be said in defence of such an assertion, that it is day when the Sun is turned towards the day, and it is night when turned towards the night. Their doctrine has reference merely to judicial astrology and the fruits it foretells.
12. By the degrees by which the Sun proceeds in his northern course to the end of Gemini, he moves back from that sign : entering also the same diurnal circles in his descent as he did in his ascent. Is it not therefore that the Sun is visible in his descent to the Gods in the place where he was first seen by them in his ascent ?

> Jongth of tho day of tho piteis.
13. The pitris reside on the upper part of the Moon and fancy the fountain of nectar to be beneath themselves. They behold the Sun on the day of our Auivisyd or new Moon in their zenith. That therefore is the time of their midday.
14. They (i. e. the pitris) cannot see the Sun when he is opposite the lower part of the Moon : it is therefore, midnight with the pitris on the day of the pureimá or full Moon. The Sun rises to them in the middle of the erishna paksina or dark half of the Moon, and sets in the middle of the s'okla paksea or light half of the Moon. This is clearly established from tho context.
15. As Brahiá being at an im-

The explanation of a day of Beabrá? mense distance from the Earth, always sees the Sun till tl.e time of the prarava or general deluge, and sleeps for the same time, therefore
the day and night of Braimas are together of 2000 mahkyuaas in length.

The time taken by ench sign in rising abore the horizon.
16. As the portion of the ecliptic which is more oblique than the other, rises and sets in a shorter time and that which is more upright takes a longer time in rising and setting, hence the times of rising of the several signs are various [even at the equatorial regions].
17. The (six) signs from Capricorn to Gemini or ascending signs which are inclined towards the south with their rospective declinations whilst they rise oven at the oquator are still more inclined towards the south in the northern latitudes (on account of the obliquity of the starry sphere towards the south); hence they arise in still shorter times than they do at the equator.
18. At the equator, the [six] signs from Cancor or doscending signs incline whilst they riso to the northerly direction, but they will have upright direction in consequence of the northern latitude, hence they rise in longer times [than they do at the equator.] The difference between the period of the rising of a sign in a given latitude, and at the equator under the same meridian, is equivalent to the charakilanpa of that sign.
19. Each quarter of the ecliptic risos in 15 airapis or 6 hours to those on the equator: and the 6 signs of the northern as well the 6 of the southern hemisphere appear to rise each in 12 hours or 30 ahapis in every or any latitude.
20. The three signs from the commencement of Aries to the end of Gomini, i. o. the first quarter of the ocliptic, pass the unmanpala in 15 ahapis; but the horizon [of a place in north latitude] is below the dnManpala, they therefore previously pass it in time less than 15 ghafis by the charakianpas.
21. The three signs from the end of Virgo to the end of Sagittarius, i. e. the 3rd quarter of the ecliptic, pass the unmanpali in 15 GHapis; but they pass the horizon of a place
afterwards which is above the unmanpala [in north latitude] in 15 ghatis added to the charakhanpas.
22. The three signs from the end of Gemini to the end of Virgo, i. e. the 2nd quarter of the ecliptic or those from the ond of Sagittarius to the end of Pisces i. e. the 4th quarter of the ecliptic, pass the horizon in the time equal to the remainder of 30 ahafis diminished by the time which the first or third quarter takes to pass tho horizon respectivoly. For this reason, the times which the signs contained in the 1st and 4th quarters of the ecliptic, or ascending signs, and those contained in the 2nd and 3rd quarters, or descending signs take to pass the horizon at a given place are found by subtracting the cinarakinanjus of tho sigus from and adding them to the times which those signs take in rising on the equator respectively.*
23. Having placed the 1st Aries in the horizon and set the sphere in motion, the tutor should show the above facts to the
*The times taken by the several signs of the ecliptic in rising at the equator and in northorn latitudos will be scen from the following memo. according to the Siddianta.

	1808.	$\triangle 888$.	A808.	
Aries,	1670	- 297	1373	2 $\begin{gathered}\text { These } 3 \text { and the last }\end{gathered}$
Taurus,	1793	- 244		$\} \begin{aligned} & \text { s iggs take less time to } \\ & \text { rise } \\ & \text { north latitude }\end{aligned}$
Gemini,	1937	101		$\int \begin{aligned} & \text { rise in } \\ & \text { than at the equator. }\end{aligned}$
Oanoer,	1937	+101	2038	
Loo,	1793	+ 244	2087	These 6 signs take a
Virgo,	1670	+297	1967	longer time to rise in
Scorpio,	1793	+297 +244	1967 2037	north latitudo than at
Sagittarius,..............	1937	+ 101	2088	
Capricorn, ...	1937	- 101	1836	
Aquarius,	1793	-244	1549	
Pisces,	1670	7	1878	L. W.

pupils, that they may understand as well what has been explained as any other facts which have not been now mentioned.
24. In whatever time any sign rises above the horizon [in any latitude] the sign which is the 7th from it, will take exactly the same time in setting: as one half of the ecliptic is always above the horizon [in every latitude].
25. When the complement of latitude is less than 24° (i.e. than the extreme amount of the Sun's declination taken to be 24° by Hindu astronomers) then neither the rising periods of the signs, nor the ascensional differences and other particulars will correspond with what has been here explained. The facts of those countries (having latitudes greater than 66°) which are different from what has been explained on account of their totally different circumstances, are not here mentioned, as those countries are not inhabited by men.
26. That point of the ecliptic which is (at any time) on Rtyinology of the word tho anstorn hori\%on is callod tho lanana maga. or horoscope. This is expressed in signs, degrees, \&c. reckoned from the first point of stellar Aries. That point which is on the western horizon is called the asta-lagna or setting horoscope. The point of the ecliptic on the meridian is called the madiya-lagna or middle horoscope (culminating point of the ecliptic).*

[^35]27. If when you want to find the lagna, the given ohatis are sifana-aratis, then they will be-

The reason for finding the exact place of tho Sun at the time of question in order to find hagna.
come sidereal by finding the Sun's instantaneous place i. e. the place of the Sun for the hour given. The times

which he has passed, and those which he has to pass, are known. Thus the degrees which the Sun has passed, and those which he has to pass, are called the broitins'as and brogikns'as respeotively. Now the time which the Sun requires to pass the brogrins'as is called the broara time, and in found by the following proportion.

If 30°

: the period of rising of the sign in which the Sun is
: : BHOGYANs'A8
: Brogya time.
In the same manner, the bEUETA time can also be found through the mnuerineag.

Now from the time at the ond of which the horoscope is to be found, and which is callod the rista or given time, subtract the broara time just found, and from the remainitor subtract the periods of risings of the next successive sigus to that in which tho Sun is as loug as you can. Then at last you will find the aign, the rising period of which being greater than the remainder you will not be able to subtract, and which is consequently callod the 18^{\prime} oddas sign, or the sign incapable of being subtracted, and its rising period, $1 s^{\prime}$ UDDEA rising. From this it is evident that the $1 s^{\prime}$ udDHas sign is of course on the horizon at the given time. The degrees of the As'dDDEA sign which are above the horizon and therefore called the bHixta or pessed degrees, are found ate follow.

If the rising period of tho $1 A^{\prime}$ שDDIA sign
: 80॰
: : the romainder of the given time
: the passed degrees of the 18^{\prime} UDDIA sign.
Add to these paseed degrees thus found, the preceding signs reckoned from the lat point of Aries, and from the Bum, subtract the anount of the procession of the equinox. The remainder thus found will be the place of the horoscope from the stellar Aries.

If the time at the end of which the horoscope is to be found, be given before sun-rise, then find the broirs, or passed time of the sign in which the Bun is, in the way above shown, and subtract it and the rising periods of the procorling sigus from the given time. After this find the degroes of the As'udDHa sign corresponding to the remaindor of the given time which will ovidently be the bhogya degrees of the horoscope by proportion as shown above, and subtract the sum of the shoara degrees of the horoscope, the signs the rising periods of which are subtracted and the snoExa degrees of the sign in which the Sun is from the Sun'a place and the remainder thus found will be the place of the horoscope.

Thus we get two processes ; one when the given time at the end of which the horoecope is to be found, is after sull-riso, nud the other when that time is given before sun-rise, and which are consequently called rgayis, or direct, and ryutirama or undirect prooesses rospectively.

1t is plain from this that if the place of the Sun and that of the horoscope be known, the given time from sun-rise at the end of which the horosoope is found can be known by muking the sum of the brocys time of the sign in which the Sun is and the beuera time of the horoscope and by adding to this sam the rising periods of intermediate eigns.-B. D.]
of rising of the signs which aro sidereal must be subtracted from these cuspis (of the question) reduced to a like denomination. When the hours of tho quostion are already siderenl, there is no necessity for finding the sun's real place for that time.*

[^36]28. In those countrics having a north latitude of $69^{\circ} 20^{\prime}$ the signs sagittarius and capricornus are

Detormination of latiturles in which different signs are always above and below the horizon.
never visible: and the signs gemini and cancer remain always above the horizon.
29. In those places having a northern latitude of $78^{\circ} 15^{\prime}$, the four signs scorpio, sagittarius, capricornus, and aquarius aro nover soon, and the four signs tasurus, gemini, cancer, and loo, always appear revolving above the horizon.
30. On that far-famed hill of gold Meru which has a latitude of $90^{\circ} \mathrm{N}$. the six signs of the southern hemisphere never appear above the horizon and the six northern signs are always above the horizon.
31. Lalla has declared that when the asus of charafranpa [in any latitude] are equal to the time which any sign takes to rise on the equator, then that sign will always remain visible above the horizon : but this assertion is without reason. Were it so, then in places having a latitude of 66°, the whole twelve signs of the ecliptic would always be visible, and would all appear at onco on all occasions, as the times of their rising on tho equator are equal to the Asus of their ciana-phanpas: but this is not the fact.
32. Lalla has also stated in his work on the sphere that where the north latitude is $66^{\circ} 30^{\circ}$,

Another gross crror of LaLla. sagittarius and capricornus aro not visible, and also that in north latitude 75°, scorpio and aquarius are never there visible : but this also is an idle assertion. How, my learned friend, has he managed to make so gross and palpable an error of three degrees ?*
instantaneous place of the Sun, and through this time ascertain the instantancous place of the Sun. Thus you will get at last the exact sivaki time from sun.rise to the hour given by the repetition of this process. As the Sun is taken here for an exmmple, jou can find the sifana time of any planet or any planetary time from tho planet'e riaing to the hour given by the repetition of the aforesaid process.-B. D.]

- [Bifískariomarya means here that Laida mentioning the degrees of latitudes, has commilied n grand mistake in omitting 3 degrees, bocause he has

33. The altitude of the polar star and its zenith distance as found by observation, give respectively the latitude and the LAMBANBK or complemont of the latitude. Or the zenith distance and altitude of the Sun at mid-day when on the equinoctial give the latitude and its complement.
34. The unnata the time found in that arc of the diurnal circle which is intercepted between the eastern or western horizon and the planet above it, is sfivana. This is used in finding the shadow of the planet. The sine of the unnata which is oblique, like the AKSIIA-marna, by reason of tho latitude, is called chimdaka and not $s^{\prime} A n k u$ because it is upright.*
35. In order to find the shadow of the Moon, the udira (the time elapsed from the rising of a planet) which has been found by some astronomers by means of repeated calculation is erroneous, for the UDITA, (found by repeated calculation) is not skvana. The labour of the astronomer that does not thoroughly understand mathematics as well the doctrine of the
stated in his work that sagittarius and capricornus are always visible in a place bearing a latitude $66^{\circ} 30^{\circ}$, and scorpio and aquarius at $75^{\circ} \mathrm{N}$., whereas this is not the case, those signs are always visible in the places bearing the latitudes $69^{\circ} 80^{\prime}$ and $78^{\circ} 15^{\prime}$ respeotively as shown in the verses 28 and 29.-B. D.]

* [When the Sun is above the Forizon, the shadow causod by a gnomon 18 digits, high, is called the Bun's shadow according to the s'idduanta languages and having at first determined the sine of the Sun's altitude and that of it eomplemeut through his UDIra time, astronomers necirtained this by tho following proportion.

> As the sine of the Sun's altitude
> $:$ the sine of its complement
> $:$: gnomon of 12 digits
> $:$ the shadow caused by the gnomon.

Thus they determine the shadow of all planets, Moon, \&e., and that of the fixed stare. Though the light of the five amall planets, Mars, \&e., and the fixed stars is not so brilliant, like that of the Sun and Moon, as to make their shariow risiblo, yet it is nocessary to determine the shadow of any hoavenly body in order to know the direction in which the body may be. Because, if the length and direction of the shadow of the body be known, the direction in which it is can be ascertained by apreading a thread from the ond of its shadow through that of the gnomon. For, if you will fix a pipe in the direction of the thread thus opread, you will see through that pipe the body whose shadow is used here.

The time given for determination of any planet's shadow must be the sívazia timo, because it is necessary to determine the degrees of allitude of a planet to know its shadow, and the degrees can be determined through the time contained in that aro of the diurnal circle intercepted between the planet and horizon. But the time containod in this aro oannot be other than the sívana time.-B. D.]
sphore, in writing a book of instruction on tho science is uttorly futilo and usoloss.*
36. Tho degrees of altitude are found in the dpinmanpala or vertical circle, being the degrees of

Determination of sixt and Desigjza.

 elevation in it above the horizon; the degrees of zenith distance are (as their name imports) the degrees in the same circle by which the object is distant from the zenith or mid-heaven of the observer : the s'ansu is the sine of the degrees of altitude: and the driary is the sine of the zenith distance.37. When the Sun in his ascent arrives at the prime vertical, the s'anku found at the moment is
Of samadianke, ronathe sama-s'anko : the s'anives found at the moments of his passing the ronsvirits and the meridian are respectively termed tho konas'aniv and madiya-s'anko.
38. One-half of the vertical circle in which a planet is observed should be visible, but only

Reason of the correction of parallax to the sine of altitude. one-half less the portion opposite the radius of the Earth is visible to observors on the surface of the Earth. Therefore is part of tho daily motion of the planet observed is to be subtracted from the sine of altitude or from the $\mathrm{s}^{\prime} \mathrm{ANEO}$ to find the shadow : [inasmuch as that amount is concealed by, or opposite to, the Earth].
39. The $\Delta a r d$ (the sine of amplitude) is the sine of the arc of the horizon intercepted between the prime vertical and the planet's diurnal circle in the east or west i . e. between

[^37]the east or west point of the horizon, and the point of the horizon at which the planet rises or sets. The line connceting the points of the extremities of the east and wost AGR\& is called the ddayksta-sutra, the line of rising and setting.
40. The s'anku-tala or base of the s'anku stretches during the day to the south of the udyásta-sutra; because the diurnal circle have during the day a southern inclination (in northern latitude) above the horizon. But, below the horizon at night, the base lies to the north of the udayista-sutra as then the diurnal circles incline to the north. 'Tho s'ankutaLa's place has thus been rightly defined,
41. The s'anev-tana lies to the south of the extreme point of $\triangle G R K$ when that $\triangle G R A$ is north and when the $\triangle G R K$ is south, the s'anku-tala lies still to the south of it. The difference and sum of the sine of amplitude and s'anku-tata lins boen denominated the bírf or bhuja; it is the sine of the degrees lying between the prime vertical and the planct on tho plano of the horizon.
42. [Taking this $\mathrm{B} \& \mathrm{HO}$ as one side of a right-angled triangle.] The sine of the zenith distance being the hypothenuse then the third side or the copi being the square root of the difference of their squares will be found : it is an east and west portion of the diameter of the prime vertical.*

I now propose to explain the triangles which are created by reason of the Sun's varying declination : and shall then proceed to explain briefly also the latitudinal triangles or those created by different latitudes. [The former are called kranti-ksimerras and the latter AKSHA-KSHETRAs.]

[^38]
43. In the 1st trianglo of declination.

1st. The sine of declination = bruja or base, $\left.\begin{array}{l}\text { tho rudius of diurnal circle cor-- } \\ \text { responding with the declination }\end{array}\right\}=$ Kopı or porabove given \int pendicular, and radius of large circle $\quad=$ hypothenuse.

2nd. Or in a right sphere.
The sine of 1,2 or 3 signs $=$ hypothenuse :
The declination of 1,2 or 3 signs in six $\}=$ bhujas. o'clock line.$~$
44. Sines of arcs of diurnal circles cor$\left.\begin{array}{l}\text { responding with the declination } \\ \text { nbove given }\end{array}\right\}=$ кoris.
'Ihose sines being converted into terms of a large circle : and their arcs taken, they will then express the times in asus which each sign of the ecliptic takes in rising at the equator i. e. the right ascensions of those signs or the lankodayas, that is the 2nd will be found when the 1st is subtracted from two found conjointly, nnd the 3rd will be found when the sum of the 1 st and 2 nd is subtracted from threc found conjointly.
45. In the right-angled triangle formed by the sianku Triangles arise from lati- or gnomon when the Sun is on the tude. equinoctial.*
1st. The s'ANKU of 12 digits = the roti.
Tho ratadilí or the shadow of sianku or gnomon $\}=$ tho imuja
and the aksha-karsia
$\left\{\begin{array}{l}\text { = the karna or } \\ \text { hypothenuse }\end{array}\right.$
or 2nd. The sine of latitude
= BHUJA.

The sine of co-latitude
= коті
and radius
= hypothenuse
This triangle is found in the plane of the meridinn.

[^39]$\left.\begin{array}{l}\text { 46. Or the sine of declination reckoned } \\ \text { the unmanpala from theeast and westline }\end{array}\right\}=$ котi.
$\left.\begin{array}{l}\text { KUJYA, the sine of ascensional difference } \\ \text { the diurnal circle of the given day }\end{array}\right\}=$ biluda.

Let \mathbb{Z} G N H be the meridian of the given place, $G A H$ the diameter of the horizon, Z lhe Zenith, P and Q the north and sonth polea, E A \mathbf{F} the diameter of the equinoctial, $\mathbf{P} \boldsymbol{A} \mathbf{Q}$ thut of the six o'clock lino, $\mathbf{O f} \mathrm{f}^{\mathrm{i}}$) that of one of tho diurnal circles, aud E B, $\boldsymbol{f}_{\boldsymbol{h}}$ the perpendioulars to G II. Then it is cloar from this that

$$
\begin{aligned}
& \mathbf{Z E} \text { or } \mathbf{H P}=\text { the latitude, } \\
& A B=\text { the sino of it, } \\
& \text { E B }=\text { the co-sine of } i_{5} \\
& \text { A } f=\text { tho declination of a planet revolving in the diurnal } \\
& \text { circlu whouse diannulur is } 0 \mathrm{f} \text {), } \\
& \text { and } \therefore \text { A } g=\text { tho dara or tho sinv of amplitudo, } \\
& \boldsymbol{f} \boldsymbol{g}=\text { the EUJY', } \\
& \text { A. }=\text { the sama-si'nvu or the sine of the planet's ultitude } \\
& \text { when it reaches the prime vertical. } \\
& \text { eg = the ravdHgiti, } \\
& \text { - } f=\text { the taddeqititi-rojyá, } \\
& f^{h}=\text { the dmentpala s'anev or the sine of the planet's } \\
& \text { altitude whon it rexucius tho six o'clock line, }
\end{aligned}
$$

> of amplitudo,
> and $\mathrm{kg}=$ tho sgra 'aba-kianpa or the and portion of tho sine of anuplitude ;

I'he sine of amplitude in the horizon = hypothenuse This is a well known triangle.

Therefore, with the exception of the first and last the other six triangles stated in the rerses are these in succesoion. A. EB, $\mathbf{A} g f, \mathrm{~A} \in g, \mathbf{A}$ of, Afh and $g f h$ and the lirst triangle you will get by dividing the three sides of the E B
triangle A E B by $\frac{12}{12}$ and for the last see the note on the verse 49.
It is clonr from tho abovo ilescribod diagram thant all of thone trinuglos are similar to onch othor and consequently they can be known by means of proportinn if nuy of thon lo known.

I'ho simminkris, linving thus producod sorornl tringglos aimilar to thoens original by fastoning the threads within the armillary spherc, find answors of the several questions of the spherical trigonometry. Some problems of the spherical trigonometry can be solved with greater facility by this Eiddinasta way than the trigonometrical way. As

Problem. The zenith distances of a star when it has reached the prime vertical and the meridian at a day in any place are known, find the latitude in the plnce.

The way for finding the answor of this problem according to the sidduanta is as followe.

Draw C $c \perp A \mathrm{Z}$, (See the proceeding diagram) then $\mathbf{C} \subset \in$ will be a latitudinal triangle.

Or

$$
\text { Making the unmandala sanko } \quad=\text { Koti }
$$

$\left.\begin{array}{l}\text { the agrígra-khanda or } 2 \text { nd portion of the } \\ \text { sine of amplitude is }\end{array}\right\}=$ biujya
the Kujya then becomes $\quad=$ hypothenuso
49.* The s'anko being = котı
and the s'anku-tala $=$ bituja
Then the cherdaka or hriti $\quad=$ hypothenuso
Those who have a clear knowledge of the spherics having thus immediately formod thousands of triangles should explain the doctrine of the sphere to their pupils.

End of Chapter VII. on the principles of the rules for resolving the questions on time, space and directions.

Chaptrar VIII.

Called Grahana Vísaná.

In explanation of the cause of eclipses of the Sun and Moon.

1. The Moon, moving like a cloud in a lowor sphoro,

The cauce of the direotions of the beginning and end of the solar eelipeo. overtakes the Sun [by reason of its quicker motion and obscures its shining disk by its own dark body :] hence it arises that the western side of the Sun's disk is first obscured, and that the eastern side is the last part relieved from the Moon's dark body : and to some places the Sun is eclipsed and to others is not eclipsed (although he is above the horizon) on account of their different orbits.

[^40]2. At the change of the Moon it often so hidppons that an

The cause of the parallax in longitude and that in latitude. observer placed at the centre of the Earth, would find the Sun when far from the zenith, obscured by the intervening body of the Moon, whilst another observer on the surface of the Earth will not at the same time find him to be so obscured, as the Moon will appear to him [on the higher elevation] to be depressed from the line of vision extonding from his eye to the Sun. Hence arises the necessity for the correction of parallax in celestial longitude and parallax in latitude in solar eclipses in consequence of the difference of the distances of the Sun and Moon.
3. When tho Sun and Moon are in opposition, the Earth's shadow envelopes the Moon in darkness. As the Moon is actually enveloped in darkness, its eclipse is equally seen by every one on the Earth's surface [above whose horizon it may be at the time] : and as the Earth's shadow and the Moon which enters it, are at the same distance from the Earth, there is thcrofore no call for the correction of the parallax in a lunar oclipse.
4. As the Moon moring eastward enters the dark sha-

The canse of the direotions of the beginning and end of the lunar eclipse. dow of the Earth : therefore its eastern side is first of all involved in obscurity, and its western is the last portion of its disc which emorges from darkness as it advances in its course.
5. As the Sun is a body of vast size, and the Earth insignificantly small in comparison : the shadow mado by the Sun from the Earth is therefore of a conical form terminating in a sharp point. It oxtonds to a distance considerably beyond that of the Moon's orbit.
6. Tho length of the Earth's shadow, and its breadth at the part traversed by the Moon, may be easily found by proportion.

In the lunar eclipse the Earth's shadow is northwards or southwards of the Moon when its latitude is south or north. Hence the latitude of the Moon is here to be supposed inverso (i. e. it is to be marked reversly in the projection to find tho centre of the Earth's shadow from the Moon.)
7. As the horns of the Moon, when it is half obscured form

The determination of the coverer in the eclipae of the Sun aud Moon. very obtuse angles : and the duration of a lunar eclipse is also very great, hence the coverer of the Moon is much larger than it.
8. The horns of the Sun on the contrary when half of its disc is obscured form very acute angles : and the duration of a solar eclipse is short : hence it may be safely inferrod that tho dimensions of the body causing the obscuration in a solar oclipse are smallor than and difforent from tho body causing on eclipse of the Moon.*
9. Those learned astronomers, who, boing too exclusivoly devoted to the doctrine of the sphere, believe and maintain that RABU cannot be the cause of the obscuration of the Sun and Moon, founding their assertions on the above mentioned contrarieties, and differences in the parts of the body first obscured, in the place, time, causes of obscuration \&c. must be admitted to assert what is at variance with the Sanhití, the Vrdas and Purinas.
10. All discrepancy, however, between the assertions above referred to and the sacred scriptures may be reconciled by understanding that it is the dark Rкнu which entering tho Earth's shadow obscures the Moon, and which again ontoring the Moon (in a solar eclipse) obscures the San by tho powor conferred upon it by the favour of Bramma.

[^41]11. As the spectator is elovatod above the contro of the

What is the enuse of parallnx, and why it is calculntod from the radius of the Earth. earth by half its diameter, he therefore sces tho Moon doprossod from its place [as found by a calculation made for the centre of the Earth]. Hence the parallax in longitude is calculated from the radius of the Earth, as is also the parallax. in latitude.
12. Draw upon a smooth wall, tho sphoro of the carth reduced to any convenient scale, and the orbits of the Moon and Sun at proportionate distances : next draw a transverse diameter and also a perpendicular diameter to both orbits.*

13, 14 and 15. Those points of the orbits cut by this diameter are on the (rational) horizon. And the point above

Fig. 1.

[^42]cut by the perpendicular diameter will reprosent the observer's zenith: Then placing the Sun and Moon with their respective zenith distances [as found by a proportional scale of sines and arcs,] let the learned astronomor show the manner in whiph

Fig. 2.
As in Fig. E_{1} lot 4 be a spoctator on the earth's surfice; Z the zenith; and Z 8 the vertical circle pascing through the planet 8: Let a circle $Z^{\prime \prime m} r$ be dencribod with centre A and radius E S which onte the lines 4 Z and $A \$$ produced in the points Z^{\prime} and r : Lot a line a m be drawn parallel to E Z , then the aro ' 2 ' m will be equal to the aro 7 8. Now the planet S zoon from E has a zonith disfance $Z S$ and from A, a zenith distanco $Z^{\prime} r$ greator than $Z \mathbf{S}$ or $7^{\prime} m$ by the aro $\mathrm{m} r$, hence the apparant place r of the planet is depressed by $m r$ in the vertical circlo. This aro $m r$ is therofore the common parallinx of the planet, which can be found as follows,
Draím mon porpondioular to $\boldsymbol{A} r$ and r oto $A Z$ and lot $P=E S$ or $A r$;

$$
d=Z \Phi \text { or } Z{ }^{\prime} \text { m the }
$$

true penith distance of the planet;
and \therefore. $\boldsymbol{d}+\boldsymbol{p}=\boldsymbol{Z} \boldsymbol{r}$ the apparent zenith distance of the planet,
Then $m m=\sin p$ and $r o=\sin (d+p)$.
Now by timilar trianglea $A r o, 8 \mathrm{~mm}$.

Hpnoe, it is prident from this that when thp ain $(d+p)=\mathbf{R}$ or $d+p=$ 200, then the parallas will be greateat and if it be denoted by P,

$$
\sin P=k \operatorname{and} r_{0} \sin p=\frac{\sin P \times \sin (d+p)}{R}
$$

Now, the parallax is generally no amall that no cousiblo orror is jntroducol by making $\sin p=p$ and $\sin P=P_{;}$

$$
\therefore p=\frac{P \times \sin (d+p)}{R}
$$

Again, for the rpecon just montioned sin d is asaumed for ain $(d+p)$ in the

$$
\therefore p=\frac{P \cdot \sin d}{R}
$$

that is, the common parallax of a planot is found by multiplying the greateat parallux by the oine of the zenith distauce and dividing the product by the radiua,-B. D.]

$$
\begin{aligned}
& \text { Ar: } \quad \text { o }=8 \mathrm{~m}: m \mathrm{~m} \\
& \text { or } \mathrm{f}_{\mathrm{y}} \mathrm{~s} \sin (d+p)=h: \sin p_{;} \\
& \therefore \sin p=\frac{h \times \sin (d+p)}{B} .
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A}=\mathrm{E} \boldsymbol{\Delta} \text { or } \mathrm{m} \mathrm{~s} ; \\
& p=m r \text { the paral- } \\
& \text { lax: }
\end{aligned}
$$

the parallax arisos. [Fror this purposo] let him draw one lino passing the centre of the earth to the Sun's disc : and another which is callod tho driksútra or lino of vision, let him draw from the observer on the Earth's surface to the Sun's disc. The minutes contained in the arc, intercepted between these two lines give the Moon's parallax from the Sun.
16. (At the new Moon) the Sun and Moon will always appear by a lino drawn from the centre of the earth to bo in exactly the same place and to have the same longitude: but when the Moon is observed from the surface of the Earth in the dplesutra or line of vision, it appears to be depressed, and hence the name laybana, or depression, for parallax.
17. (Whon the new Moon happens in the zenith) then the lino drawn from the Earth's centre will coincide with that drawn from its surface, hence a planet has no parallax when in the zenith.

Now on a wall running due north and south draw a diagram as above prescribed; [i. e. draw the Earth, and also the orbits of the Sun and Moon at proportionate distances from the Earth, and also the diameter transverse and perpendicular, \&o.]
18. The orbits now drawn, must be considered as driseng. pa-viritas or the azimuth circles for the nonagesimal. The sine of the zenith distance of the nonagesimal or of the latitude of the zenith is the dpursispa of both the Sun and Moon.
19. Mark the nonagesimal points on the dpiksispa-vpittas at the distance from the zenith equal to the latitude of the points. From these two points (supposing them as the Sun and Moon) find as before the minutes of parallax in altitude. These minutes are here Nati-raliss, i. e. the minutes of the parallax in latitude of the Moon from the Sun.
20. The differonce north and south between the two orbits i i, e. the measure of their mutual inclination, is the same in ovory part of tho orbit as it is in the nonagesimal point, henco this difference callod nati is ascertained through the drizemepA or the sine of the zenith distance of the nonagesimal.*
[* When the planet is depressod in the vortical circle, ite north and south
21. The amount by which the Moon is depressed below the Sun deflected from the zenith [at the conjunction] wherever it be, is the cast and west difference between the Sun and Moon in a vertical circle.*
distance from its orbit caused by this depression is called MaTI or the parallux iu latitude.

Fig. 3.
As, in Fig. 8, let Z be the zonith ; N the nonagesimal; $Z \mathrm{~N} \mathbf{P}$ ite vertical circle; \mathbf{N} s. r the ecliptic; \mathbf{P} its pole; $Z \quad s$ the vertical circlo passing through the true place $\mathbf{8}$ and the depressed or apparent place t of the Sun; P tra socondary to the ecliptic passing through tho apparent pluce t of the Sun; then er is tho spabifa mamdana or the parallay in longitudo and $t r$ the Rati or the parallax in latitude which can be found in the folowing mannor according to the siddiantas.

Int Z N be the zenith distance of the nonagesimal and $Z 8$ that of the Sun ; then by the trianglea $Z \mathrm{~N} \mathrm{~S}_{\mathrm{t}} \boldsymbol{t} \boldsymbol{f} \boldsymbol{r}$
$\sin 28: \sin 2 N=\sin e t: \sin r t$

$$
\therefore \sin r t=\frac{\sin 2 t \times \sin \angle N}{\sin 2 g}
$$

Now, \& t is taken for sin $s t$, and $r t$ for $\sin r t_{\text {, }}$ on account of their being very amall

$$
\therefore r t=\frac{s t X \sin \mathrm{ZN}}{\sin \mathrm{ZS}} ;
$$

but according to the sidDeinitas

$$
\begin{align*}
& t t=\frac{P \cdot \sin 28}{R} \text { (see the preceding note).. (1) } \tag{2}
\end{align*}
$$

that is, the rATTI is found by multiplying the sine of the latitude of the nonagesimal by the greatest parallax and dividing the product by the radius.

It is clear from this that the north and south distance frem tho Sun depressed in the rertioal circle to the ecliptic wherever he may be in it, bocomes equal to the common parallax at the nonagosimal, and henco the MATI is to be determined from the zeuith distance of the nonagesimal.

For this reason, by subtracting the NATI of the Sun from that of the Moon, which are eoparatoly found in tho way above montionod, tho parallux in latitudo of the Moon from the Sun is found : und this bocomos equal to the difforenco between the mean parallaxes of the Sun and Moon at the nonagesimal. The eame fact is shown by Byisinar_orisya through the diagrams stated in the varnes 12th \&o.

At the time of the eolipse as the latitude of the Moon revolving in its orbita is very small, the Moon, thorefore, is not far from the ecliptic; and hence the parallax in longitude and that in latitude of the Moon is here determinod from hot corrosponding place in tho ecliptio, on account of tho dillicrenco being vory amull.-B. D.]

- [According to the tochnicality of the Siddhantas, tho distanco taken in any circlo from any point in it, is called the cast and west distanco of the point, and

22. For this reason, the difference is two-fold, being partly east and west, and partly north and south. And the ecliptic is here onst and west, and the circle socondary to it is north and south. (It follows from this, that the east and west difference lies in the ecliptic, and the north and south difference in the secondary to it.)
23. The difforence east and west has been denominated lambana or parallax in longitudo, whilst that running north and south is parallax in latitude.
24. The parallax in minutes as observed in a vertical circle, forms the hypothenuse of a right angle triangle, of which the nati-kALS or the minutes of the parallax in latitude form one of the sides adjoining the right angle then the third side found by taking the square-root of the difference of the squares of the two preceding sides will be sphota-lambana-LIpta or the minutes of the parallax in longitude.*
25. The amounts in minutes of parallax in a vertical circle may be found by multiplying the sine of the Sun's zenith distance of the minutes of tho oxtromo or horizontal parallax and dividing tho product by tho radius. Ithus tho nati will bo found from tho deliksireis or tho sine of the nonagesimal zenith distance. \dagger
26. The extreme or horizontal parallax of the Moon from the Sun amounts to ${ }_{1} \frac{1}{6}$ part of the difference of the Sun's and Moon's daily motion. For ${ }_{13}^{13}$ part of the yojanas, the distance of which any planet traverses per diem (according to the siddifintas) is equal to the Earth's radius.
27. The minutes of the parallax in longitude of the Moon from the Sun divided by the difference in degrees of the daily

[^43]motions of the Sun and Moon will be converted into arapis [i. e. the time between the true and apparent conjunction].*

If the Moon be to the east [of the nonagesimal], it is thrown forward from the Sun, if to the west it is thrown backward (by the parallax).
28. And if the Moon be advanced from the Sun, then it must be inferred that the conjunction has already taken place by reason of the Moon's quicker motion; if depressed behind the Sun, then it may be inferred that the conjunction is to come by the same reason.

Hence the parallax in time, if the Moon be to the east [of the nonagesimal] is to be subtracted from the end of the tithi or the hour of ecliptic conjunction, and to be added when the Moon is to the west [of the nonagesimal].
29. The latitudo of the Moon is north and south distanco between the Sun and Moon, and the Napi also is north and south. Hence the skra or latitude applied with the nati or the parallax in latitude, becomes the apparent latitude (of the Moon from the Sun).

Valana or variation (of the ecliptic).
[The deviation of the ecliptic from the eastern point (in reference to the observer's place) of a planet's disc, situated in the ecliptic is called the Varana or variation (of the ecliptic). It is ovident from this, that the variation is oquivalont to tho arc which is the measure of the angle formed by the ecliptic and the secondary to the circle of position at the planet's place in the ecliptic. It is equal to that arc also, which is the

[^44]measure of the angle at the place of the planet in the ecliptic formed ly the circle of position and the circle of latitude. It is very difficult to find it at once. For this reason, it is divided into two parts called the axsha-valana (latitudinal variation) and the fiyana-valana (solstitial variation). The Arsha-valana is the arc which is the measure of the angle formed by the circle of position, and the circle of declination at the place of the planct in tho ocliptic, and the syana-valana is the arc which is the measure of the angle formed by the circle of declination and the circle of latitude. This angle is equivalent to the angle of position. From the sum or difference of these two arcs, the arc which is the measure of the anglo formed by the circle of position and the circle of latitude is ascortained, and hence it is sometimes called the s'pashfavalana or rectified variation.

Now, according to the phraseology of the Siddhintas, the point at a distance of 90° forward from any place in any circle is the east point of that place, and the point at an equal ristance backwards from it is the wast point. And, the right haud point, 90° distant from that place, in the secondary to the former circlo, is the south point, and the left hand point, is the north point. According to this language, the doviation of the east point of the place of the planet in the ecliptid, from the east point in the secondary to the circle of position at the planet's place, is the valana. But the secondary to the circle of position will intersoct the prime vertical at a distance of 90° forward from the place of the planet, and hence the deviation of the east point in the ecliptic from the east point in the prime vertical is the valana or variation, and this results equally in all directions. When the east point in the ecliptio is to the north of the east point in the prime vertical, the variation is north, if it be to the south, the variation is south.

The use of the valana is this that, in drawing the projections of the eclipses, after the disc of the body which is to be eclipsed is drawn, and the north and south and the east and
west lines are also marked in it, which lines will, of course, represent the circle of position and its secondary, the direction of the line representing the ecliptic in the disc of the body can easily be found through the valana. Ithis direction being known, the exact directions of the boginning, middle and the end of the eclipse can be determined. But as the Moon revolves in its orbit, the direction of its orbit, therefore, is to be found. But the method for finding this is very difficult, and consequently instead of doing this, Astronomers determined the direction of the ecliptic, by means of the Moon's corresponding place in it and then ascertain the direction of the Moon's orbit.

The valana will exactly be anderstood by seeing the following diagram

Let EPC be the ecliptic, P the place of the planet in it, AhB the equinoctial, V the vernal equinox, $D h F$ the prime vertical, h the point of intersection of the prime vertical and
the equinoctial, henco h the cast or west point of the horizon and $D h$ equivalent to the nata which is found in the V. 36. Again, let $c P c, a, P b$ and $d P f$ be the circles of latitude, declination and position respectively passing through the place of the planet in the ecliptic.

Then,
the $\operatorname{arc} f b$ which is the measure of $\angle b \mathrm{P} f=$ the 亿квнаvaland:
the arc $b c$ \qquad $\angle c \mathrm{P} b=$ the Kinanavalana:
and the $\operatorname{arc} f c \ldots \ldots<c \mathrm{P} f=$ the spasitavalana.

Or according to the phraseology of the SiddiKintas E the east point of P in the ecliptic ;
A D the prime vertical ;
hence,
 vatana :
.............. A to E or arc A.E or b $c=$ the ©yana-valana :
and $\ldots \ldots .$. D to D or arc J) H or $f \rho=$ tho spasifa-valana or rectified varriation.

These arcs can be found as follows
Let, $l=$ longitude of the planet,
$e=$ obliquity of the ecliptic,
$d_{1}=$ declination of the planet,
$L=$ latitude of the place,
$n=\mathbf{N a T A}$,
$x=$ dyana-valana,
$y=$ кквHA-talana,
and $7=$ rectificd valana.
Then, in the spherical triangle $\mathbf{A} \mathbf{V}$, $\sin \mathrm{EAV}: \sin \mathrm{A} V E=\sin \mathrm{EV}: \sin \mathrm{A} \mathrm{E}$,
or $\quad \cos d: \sin \theta=\cos l \quad: \sin x$, м 2
$\therefore \sin x$ or sine of the KYaNA-valana $=\frac{\sin e \cdot \cos l .}{\cos l}(\mathrm{~A})$
See V. 32, 33, 34.
This valana is called north or sonth as the point Th be north or south to the point A.

And, in the triangle $A h \mathrm{D}$.
$\sin \mathrm{DA} h: \sin \mathrm{A} h \mathrm{D}=\sin \mathrm{D} h: \sin \mathrm{D} \mathrm{A} ;$
here, $\sin \mathrm{DA} h=\sin \mathrm{EA} \mathrm{V}=\cos l$,
$\sin A h D=\sin L$,
and $\sin \mathrm{D} h=\sin n$,
$\therefore \quad \cos d: \sin L=\sin u: \sin y$,
$\therefore \quad \sin y$ or sine of the aKSha-valana $=\frac{\sin \mathrm{L} \cdot \sin n}{\cos d}(\mathrm{~B})$
Seo V. 37.
The íksin-valana is called north or south as the point A be north or south to the point D.

And the rectified valana $\mathbf{D} E=\mathbf{D A}+\mathbf{A} \mathrm{E}$, when the point A lies between the points D and E, but if the point A be beyond them, the rectified valana will be equal to the difference between the Akbia and Ryana-valana. This also is called north or south as the point E be north or south to the point D.

The ancient astronomors Lalla, S^{\prime} ripati \&c. used tho co-versed $\sin l$ instead of $\cos l$ and the radius for the $\cos d$ in (A) and the versed $\sin n$ in the place of $\sin n$ and radins for the $\cos d$ in (B) and hence, the valanas, found by them are wrong. Biáskarkcharya therofore, in ordor to convineo the people of the said mistake mado by Tanida, S'ripati, ike. in finding the valanas refuted them in several ways in the subsequent parts of this chapter.-B. D.]
30. In either the 1st Libra or the 1st Aries in the equi-

 noctial point of intersection of the equinoctial and ecliptic, the north and south lines of the two circles i. e. their secondaries are differentand are at a distanco* of tho extrome declination (of tho Sum i. e. 24°) from each other.
31. Hence, tho fyana-valana will then be equal to the sine of 24° :-The north and sonth lines of these two circles however are coincident at the solstitial points.

32, 33 and 34. And the north and south lines being there coincident, it follows as a matter of course that the east of thoso two circles will bo tho same. Henco at the solstitial points there is no (íyana) valana.

When the planet is in any point of the ecliptic between the equinoctial and solstitial points, fyana-valana is then found by proportion, or by multiplying the co-sine of the longitude of tho planct by the sine of 24°, and dividing the product by the dyujyk or the co-sine of the declination of the planet. This Kynna-talana is called north or south as the planet bo in the ascending or descending signs respectively.

Thus in like manner at the point of intersection of the primo

> גKgII-VALASA. vertical and equinoctial, the six o'clock line is the north and south line of the equinoctial, whilst the horizon (of the given place) is the north and south line of the prime vertical. The distance of these north and south lines is equal to the latitude (of the place).
35. Hence at (the east or west point of) the horizon, the misifa-valana is equal to the sine of the latitude. At midday the north and south line of the equinoctial and prime vertical is the same. Hence at midday there is no Kisita-valana.
36. For any intervening spot, the Kisha-valana is to be found from the sine of the nata \dagger by proportion.

First, the degrees of nata are (nearly) to be found by multiplying the time from noon by 90 and dividing the product by tho half longth of day.

[^45]37. Then the sine of the nata degroos multiplied by the sine of latitude, and divided by the co-sine of the declination of the planet will be the aksha-valana. If the nata be to the east, the disha-valana is called north. If west, then it is called south (in the north terrestrial latitude).

The sum and difference of the ryana and akbha-valanas

EPABETA-TALAXA.
must be taken for the spashta-valana, viz. their sum when the Gixana and Aksha-valanas are both of the same denomination, and their difference when of different denominations i, o. one north and the other south.
38. When the planet is at either the points of the intersection of the ecliptic and prime vertical, the spashfa-valana found by adding or subtracting the kyana and kisha-valanas (as they happen to be of the samo or difforent donominations) is for that time at its maximum.
39. But at a point of the ecliptic distant from tho point of intersection three signs either forward or backward, there is no spabhta-valana : for, at those points the north and the south lines of the two circles are coincident.
40. However, were you to attempt to show by the use of the versed sine, that there was then no spashita-valana at those points, you could not succeed. The calculation must bo worked by the right sine. I repeat this to impress the rulo more strongly on your mind.
41. As all the circles of declination meet at the poles; it Another way of refutation is therefore evident that the north of using the versed sine. and south line perpendicular to the east and west line in the plane of the equinoctial, will fall in the poles.
42. But all the circles of celestial latitude meet in the pole of the ecliptic-called the radamba, 24° distant from the equinoctial pole. And it is this ecliptic pole which causes and makes manifest the valana.
43. In the ecliptic poles always lies the north and south
lino which is porpendicular to tho east and wost line in the plane of the ecliptic.

To illustrate this, a circlo should bo attached to tho sphero, taking the equinoctial pole for a centre, and 24° for radius. This circle is called the kadamba-bhrama-vritta or the circlo in which the kadamba revolves (round the pole).

The sines in this circle correspond with the sinos of tho declination.

All the secondary circles to the prime vertical meet in the point of intersection of the meridian and horizon, and this point of intersection is called sama i. e. north or south point of horizon.

Now from the planet draw circles on the sphere so as to meet in the sama, in the equinoctial pole and also in the ecliptic pole.

The three different kinds of valana will now clearly appear between these circles: viz. the frsha valana is the distance between the two circles just described passing through the sama and oquinoctial pole.
2. Tho fiyana-valana is tho distance between the circles passing through the ocliptic and oquinoctial polos.
3. The spashfa-valana is the distance between the circlus passing through the sama and kadamba.

These three valanas are at the distance of a quadrant from the planet and are the same in all directions.

48 and 49. Or (to illustrate the subject further) making second mode of illustrat- the planet as the pole of a sphere, ing the Spasata-talama. draw a circle at 90° from it: then in that circle you will observe the kraba valana-which, in it, is the distance of the point intersected by the equinoctial from the point cut by tho prime vertical.

The distance of the point cut by the equinoctial from that cat by the ecliptic is the Xxans-and the distance between the points cut by the ecliptic and prime vertical the spasuravalana.
50. In this case the plane of the ecliptic is always east and west-celestial latitude forming its north and south line. Those therefore who (like s'rfpati or Lahla) would add the s'ara celestial latitude to find the valana, labour under a grievous delusion.
51. The 1st of Capricorn and the ecliptic polo reach the meridian at the same time (in any latitude) : so also with regard to the 1st Cancer. Hence at the solstitial points thero is no kyana-valana.
52. As the 1st Capricorn revolves in the sphere, so tho ecliptic pole revolves in its own small circle (called the ks-damba-bHrama-vritta round the pole).

53 and 54. When the 1st of Aquarius or the 1st of Pisces comes to the meridian, the distance in the form of a sine in tho radamba-bitrama-vmimia, botween the ecliptic pole and the meridian is the fyana-valana. This valana corresponds with the krantijys or the sino of doclination found fiom tho degrees corresponding to the time elapsed from the 1st Capricornus leaving the meridian.
55. As the versed sine is like tho sagitta and the sine is the half chord (therefore the versed sine of the distance of the ecliptic pole from the meridian will not expross tho proper quantity of valana as has been assertod by lalla \&c. : but the right sine of that distance does so procisely). I'lho íynnavalana will be found from the declination of the longitude of the Sun added with three signs or 90°.
56. 'Those people who have directed that the versed sine of the declination of that point three signs in advance of the Sun should be usod, have therelby vitiatod the wholo calculittion. Sksha-valana may be in like manner ascertained and illustrated : but it is found by the right sine, (and not by the versed sine).
57. He who prescribes rules at variance with former texts and does not shew the error of their authors is much to be blamed. Hence I am acquitted of blame having thus clearly exposed the errors of my predecessurs.
58. Tho inapplicability of the versed sine may be further

Another way of refutation, of using the vorsod sine. illustrated as follows. Make the eclipcalled the Jina-vritta with a radius equal to 24°.
59. Then make a moveable secondary circle to the ecliptic to revolve on the two ecliptic poles. This circle will pass over the equinoctial poles, whon it comes to the ond of the sign of Gemini.
60. By whatever number of degrees this secondary circle is advancod beyoud the end of Gemini, by precisely the same number of degrees, it is advanced beyond the equinoctial pole, in this small jina-vpitta. The sine of those degrees will be thicre found to correspond oxactly with and increase as does the sine of the doclination.
61. And this sine is the Cyana-valana : This valana is tho valana at the end of the dynjya. For the distance between the equinoctial pole and planet is always equal to the arc of which the dynsya is the sine i. e. the cosine of the declination.
62. Junt ns tho valno of tho rosult found is roquired in terns of the radius, it is consequently to be converted into those terms.
As the jind-vpitta was drawn from the ecliptic pole as centre, with a radius equal to the greatest declination, so now, making the sama centre draw a, circle round it with a radius equal to the degrees of the place's latitude. (This circle is called aksiu-vpitta.)

63 and 64. To the two sause or north and south points of the horizon as poles, attach a moveable secondary circle to the prime vertical. Now, if this moveable circle be brought over the planet, then its distance counted in the arsha-vpitta or small circlo from tho equinoctial polo will be exactly equal to that of the planet from the zenith in the prime vertical. The sino of the plauet's zenith distance in tho prime vertical, will, when reduced to the valuo of the radius of aksha-vpitta represent the Aksha-valana.
65. As in the kyana-valana so also in this áksha-valana, the result at the end of the dynjyí is found ; this therefore must be converted into terms of the radius. From this illustration it is evident that it may be accurately ascertained from the zenith distance in the prime vertical.
66. I will show now how the Sesea-talana may be also ascertained from the time from the planets being on the meridian in its diurnal circle. [The rule is as follows.] Add or subtract the s^{\prime} ankutala [of a given time] to and from the

> Seo verse 41, Chap. VII. sine of amplitude according as thoy minations (for the BAHU or BHOJA).
67. The sine of the latitude of the given place multiplied by the sine of the asus of the time from the planet's being on the moridian, and divided by the square-root of the difficrenco between the squares of the mhuja (above found) and of the radius, will be exactly the Sksia-valana.*

[^46] the equator and prime vertical, whose portious dutormino liso valana. I'so smaller circles being parallel to the larger, the object sought is cqually attained. -L. W.
68. Or the aksha-valana may be thus roughly found.

Multiply the time from the planet's being on the meridian and divide the product by the half length of day, the result are the nata degrees. The sine of these nata degrees multiplied by the sine of the latitude and divided by the DYNJYK or the cosine of the declination, will give the rough RKBIIA-valina.
69. Hawo tho dise of tho Sun at tho point at which tho diurnal circle intersocts tho ecliptic. The arc of the disc intercepted between these two circles represents the Syana-valama in terms of radius of the disc.
70. This valana is equal to the difference between the sine of declination of the centre of the Sun and of the point of intersection of the disc and ecliptic ; and it is thus found; multiply the radius of dise by the bHogya-khanda of the bhujs of the Sun's longitude and divide by 225.
71. Then multiply this result by sine of 24° and divide by the radius : the quotiont is the difforenco of the two sine of declination. 'This again multiplied by the radius and divided by the rulius of Sun's disc will givo tho valuo in torms of tho radius (of a great circle).
72. Now in these proportions the radius of the Sun's disc and also radius are in one case multipliers (being in third places), and in the other divisors (being the first terms of the proportion) thereforo cancel both. Ihere will then remain rule, multiply the Sun's bhoaya kHanda by sine of 24° and divide by 225.
.73 . And this quantity is equal to the declination of a point of ecliptic 90° in advance of Sun's place. Thus you observe that the vabana is found by the sino of declination as abovo alleged, (and not loy the versed sine). Abandon therefore, 0 foolish men, your erroneous rules on this subject.
74. The disc appears declined from the zenith like an umbrella; but the declination is direct to the equinoctial pole : N 2
the proportion of the DYNJYí or complement of declination is therefore required to reduce the valana found to its proper value in terms of the radius.

End of Chapter VIII. In explanation of the cause of eclipses of tho Sun and Moon.

CHAPTER IX.

Callell drikkarama-vásana on the principles of the Rules fon fincling the times of the risiug and setting of the heavenly bodies.

1. A planet is not found on the horizon at the time at

Object of the correction callod the drimespma which is requisito to be applied to the place of the planet, for finding the point of the ecliptio on the horizon when the planet reaches it.
which its corresponding point in the ecliptic (or that point of the ecliptic having the same longitude) reaches the horizon, innsmuch as it is olovatol above or depressed below the horizon, by the operation of its latitude. A correction called dẹIKkarama to find the exact time of rising and setting of a planet, is therefore necessary.
2. When the planet's corresponding point in the ocliptic reaches the horizon, the latitude then doos not coincide with the horizon, but with the circle of latitudo. The olovation of the latitude above and depression of it below the horizon, is of two sorts, [one of which is caused by the obliquity of the ecliptic and the other by the latitude of the place.] Hence the drikkarama is two-fold, i. e. tho ífana and tho akshaja or〔кsна. The detail and modo of performing these two sorts of the correction are now clearly unfolded.
3. When the two valanas are north and the planet's corresponding point in the ecliptic is in the eastern horizon, the planet is thereby depressed below the horizon by south latitude, and elevated when the planet's latitude is north.
4. Whion the two kinds of valana are south, then the reverse of this takes place; the reverse of this also takes place when the planet's corresponding point is in the western horizon.
[And the difference in the times of rising of the planet and its corresponding point is called the resultant time of the prikkarma and is found by the following proportions.]

If radius: 〔xana-valana : : what will celestial latitudo give?
$\left.\begin{array}{l}\text { 5. And } \\ \text { if cosine of the latitude of the given } \\ \text { placo }\end{array}\right\}$: Ásila-valana
: : what will slensite s'ara givo?
Multiply tho two rosults thus found by theso two proportions, by the radius and divide the products by the dYojY\& or cosine of declination.

6 and 7. Take the arcs of these two results (which are sines) and by the asus found from the sum of or the difference bctween these two arcs, the planet is depressed below or elevated above the horizon. The lagna or horoscope found by tho dircet process (as shown in the note on the vorso 26, Chapter VII.) when the planet is depressed and by the indirect process (as shown in the same note) when it is elevated, by means of the AsUs above found, is its udaya taANA rising horoscope or the point of the ecliptic which comes to tho eastorn horizon at the same time with tho planet.

When the planet's corresponding point is in the western horizon, the lagna horoscope found then by the rule converse of that above given, by means of the place of the planet added with 6 signs, is its asta lagna setting horoscope or tho point of the ecliptic which is on the eastern horizon when the planet comes to the western horizon.

8 and 9. For the fixed stars whose latitudes are very considerable the resulted time of the dpirksarma is found in a
different way. Find the ascensional difference from the mean declination of the star, i. e. from the declination of its corresponding point in the ecliptic, and also from that applied with the latitude, i. e. from the true declination. The asus found from the sum of or the difference between the ascensional differences just found, as the mean and true declinations are of the different or of the same denominations respectively, are the asus of depression or elevation depending on the aksha drikiarma. (Find also the time depending on the Ayanadrikkarma) : and from the sum of or the difference between them, as they may be of the same or different denominations, the udaya lagna or asta lagna may be ascertained as above found (in the 6th and 7th verses).*

[^47]
the north pole of the ecliptic lies below the circle of declination and the south above it.

Again, when tho planet is in the western horizon, the circle of declination pnssing through tho place of the planet in tho ecliptic lics to the north abovo the horizon, but the AKBIIA-vALANA, becomes south and hence the reverse takes place of what is said about the elevation or depression when the planet is in the eastemi horizon. But as to the ixara-rainina, it becomes north when the longitude of the planet terminates in the ascending six signs and the north pole of the ecliptic lies below the circle of declination. Hence the depression of the planet takes place when its latitude is north and the elevation when the latitude is south. But when the longitude of the planet terminates in the discending six signs, the fiana-valana becomes then south and the north pole of the ecliptic lies sbove the circle of declination. For this reason, the elevation of the planet takes place when ite latitude is north, and the depression when it is south. I'hus in the western horizon the elevations and depressions of the planet are opposite to those whon the planet is in the eastern horizon.

Now, the time elapsed from the planet's rising when it is elevated above the horizon and the time which the planet will take to rise when it is depressed below the horizon, are found in the following mannor.

10. The [Aspasifa] $S^{\prime}{ }^{\text {ara }}$ or true latitude [of the planet]

To find the value of colestial latitude in terms of a circle of declination, to rendor it fit to be added to or subtractod from declination.
multiplied by the Dyujys or cosine of declination of the point of the ecliptic, three signs in advance of tho planot's corrosponding point and di-

See the figure above described in which the angle $\mathbf{Q} \mathbf{K} \mathbf{R}$ or the equinoctial are $Q^{\prime} p^{\prime}$ denotes the time of elevation of the planet from \mathbf{Q} to \mathbf{R}, and the time of eleration of the planet from \mathbf{R} to P is denoted either by the angle $P K R$ or by the equinoctial arc $P^{\prime} p^{\prime}$. Out of these two times $Q^{\prime} p^{\prime}$ and $P^{\prime} p^{\prime}$, we show at first how to find $\mathbf{P}^{\prime} \boldsymbol{p}^{0}$.

In the triangle $\mathbf{P} \boldsymbol{p} \mathbf{P}, \mathbf{P} \boldsymbol{p}=$ the latitudo of the planct, $\angle \mathbf{P} \boldsymbol{p} \mathbf{R}=$ tho. Λ^{\prime} YAMA-VALANA and $<\mathbf{P} R p=-$, and
$\therefore \mathbf{R}: \sin P_{p} R_{1}=\sin P_{p}: \sin \mathbf{B}_{\mathbf{f}}$
or if radius
: sin of A' FAMA-TALAHA
$=$ the sine of latitude $: \sin \mathrm{R}$ P.
Again, by the similar triangles $\mathbf{K} \mathbf{P} \mathbf{R}$ and $\mathbf{K} \mathbf{P}^{\prime} \boldsymbol{p}^{\prime}$
$\sin K P: \sin R P=\sin K P^{\prime}: \sin P^{\prime} p^{\prime}$,
Lere, $\sin \mathbf{K} \mathbf{P}=$ cosine of declination and $K \mathbf{P}^{\prime \prime}=\mathbf{R}_{\boldsymbol{p}}$

$$
\therefore \sin \mathbf{P}^{\prime} P^{\prime}=\frac{\mathbf{R} \times \sin \mathbf{R} \mathbf{P}}{\cos \text { of declination }}
$$

Now, the time $p^{\prime} Q^{\prime}$ is found as follows.
 rule given in the V. 10 of this chapter, $\angle R p Q=A x s i n d$-varask and $<\mathbb{K}_{\boldsymbol{p}}=$ co-latitude of place nearly
and $\therefore \sin p \mathbf{Q}: \sin \mathbf{R} p \mathbf{Q}:: \sin p \mathbf{R}: \sin \mathbf{R} \mathbf{Q}$
or, if cosine of latitude, : sine of AISHA-TALARA $=$ BPABLTA-8'ARA $: \sin R Q_{;}$
again, by the triangles $K \mathbb{Q}, K \mathbf{Q}^{\prime} \boldsymbol{p}^{\prime}$,
$\sin K Q: \sin Q \mathbf{K}=\sin K Q^{\prime}: \sin p^{\prime} Q^{\prime} ;$
here, $\sin \mathbf{K} \mathbf{Q}=$ cosine of declination and siue $\mathbf{K} \mathbf{Q}^{\prime}=\mathbf{R}$,

$$
\therefore \sin p^{\prime} Q^{\prime}=\frac{\mathbf{R} \times \sin \mathbf{Q} \mathbf{R}}{\cos \text { of declination }}
$$

If both of these times thus found, be of the elevation or both of the depression, the planet will be elevated above or depressed below the horizon in the time equal to their sum, and if one of these be that which the planet takes for its elevation and the other for its depression, the planet will bo elovated ubove or depressed below the horizon in. the time equal to their difference as the remainder is of the time of elevation or of that of the depression. The sum or difference of the two times just found is called the resulted time of the DẹrrEarma in the B'idDEARTAS.

That point of the eoliptio which is on the castern horizon whon the planot reaches it, is called the dDAYA fagna rising horoncope of the planet. A_{8} it is necosary to know this UDAYA ragas for finding the time of the planet's riaing, we are now going to show how to find the rising horoscope. If the planet is depressed by the resulted time above mentioned, it is evident that whon the planct will come to the eastern horizon, its corresponding placo in the

BIBLIO'THECA INDIC̣A;
 A COLLECTION OF ORIENTAL WORKS,

PUBLISHED UNDEI THE-PATBONAGE OF THB

验on. Court of Birectors of the 王ast Inria Company,
AND THE BUPERINTENDENOE OV THB

ASIATIC SOCIETY OF BENGAL.

SANSKRIT WORKS IN PROGRESE,

IN THX OLD BERIES.
The Elements of Polity, by Kímandatí Edited by Bábu RÁrendralíla Mitra. Already published, Fasciculus 1: being No. 19

The Lamita Vistara, or Memoirs of the Life and Doetrines of Sakia Sinha. Edited by Bábu Rájendrathla Mitra- Already published, Fasciouli I، II. III. IV. and V. Nos. $51,73,143,144$ and 145.

The Prakrita Grammar of Kramadis'wara. Edited by Bábu Rísendralíla Mitra.

An English translation of the Chinídocya Upanismad of the Sama Veda, by Babu Rájendialína Mirta. Already published, Fascioulus I. No. 78.
The Vedínta Su'tras. Commenced by Dr_{r}, Roerr, and continued by Pandita Ránia Nárayàd Vidyáraţa, Published, Faboiculi I. II, and III, Nos, 64, 89 and 172.

The Taititififa Sinhitá of the Black Yajur Veda. Edited by Dr. T. Roere, and E. B. Cowely, M. A Published, Fasciculi 1.11. III.'1V, V. VI. VII. VIII. IX. X. XI. XII. and XIII. Nos. 92, 117, 119, 122, 131, 133, 134, 137, 149, 167, 160, 161, 166 and 171.

The Taittirifa Bbíhiana of the Bladk Yajur Veda. Rdited by Babu Rajendralála Mitra. Published, Fasciculi 1.II. III. IV:V.VI:VII. VIII, and 1X. Noa. 125, 126, 147, 150, 151, 162, 153, 154 and 155.
The Márifandiya Puna'ma, Edited by the Rev, K, Mi Banmernea, Already published, Fasciculi J. II. III. and IV. Nos. 114, 127, 140 ahd 163.

An English Translation of the SÁhitya Darpara by Dian Bariantixna?

- For a list of thd Persjan and Arablo worly in progreas, seo No. 180 of the Bibhotheca Lidica.

SANSKRIT WORKS PUBLISHED,

SANSKRIT WORKS PUBLISEED,
 IN THE NEW sERIES.

The Vais'eshika Sútras, with Commentaries, by Pandita Jaya Narayana Tarkapanchanana. Complete in five Fasc. Nos. 4, 5, 6, 8 and 10. The Sánḍilya Sútras with Swapnes' wara's Commentary. Edited by Dr. J. R. Ballantyne, LL. D. Complete in one Fasc. No. 11.
The Kaushítaki-Brahmana Upanishad with S'ankarananda's Commentary, edited with a translation by E.B. Cowell, M. A. Complete in two Fabciouli, Nos. 10 and 20.
A translation of the Surya Siddhánta and Siddhánta S'iromani, by Pandita Bápu Deva Sástri, under the superintendence of Archdeacon Pratt. Nos. 1, 18 and 28.

SANSKRIT WORES IN PROGRESE.

The Das'a Rápa with the exposition of Dhanika. Edited by F. E. Hall, D. C. L. Fasc. I. II. Nos. 12, and 24.
The Nárada Pancharátra. Edited by Rev. K. M. Banerjea. Fasc. I. No. 17.

vided by the radius becomes [nearly] the spasita or rectified latitude, [i. e. the arc of the circle of declination intercepted between the planet's corresponding point in the ecliptic and the diurnal circle passing through the planet]. This rectified latitude is used when it is to be applied to the mean declination and also in the fkria drikearma.*

11. Tho colostial latitude is not reduced by Branmaudra
ecliptic will be olevater above it by the reenlted time. Por this reason, having asoumed the corresponding place of the planet for the Bun, find the horoscope by the direct prooess through the resulted time and this will be the rising lioroscope. But if the planet be elevated above the horizon by the resulted time, its corresponding place will then be depressed below it by the same time when the planet will come to it. Therefore, the horosoope found by the indirect procces through the rosultod time ; will bo the rising horoscope of the planet.

That point of the ecliplic which is on the eastern horizon when the planet comes to the western horizon, is called the ASTA LAGNA or eetting horoscope of the planet. As it is requisite to know the setting horoscope for finding the time of setting of the planet, we therefore now show the way for finding the setting horoscope. If the planet be depressed below the western horizon by the resulted time, it is plane that when the planet will reaches it, its corresponding place will be elevated above it by the resulted time and consequently the corresponding place of the planet added with six signs will be depressed below the eastorn horizon by the same time. Therefore, assume the corresponding place of the planet added with six signs for the Sun and find the horoscope by tho indiroct procese, through the resultod time and this will bo tho asta magna eotting horosoopo. But if the planot be depressed bolow the westorn horizon, its corresponding place addod with six signs will then be elevatod abovo the castorn horizon by the resulted time and hence the horoscope found by the direct process will thon be the asta lagisa eotting horoscope.

Now the time $\boldsymbol{p}^{\prime} \mathbf{Q}^{\prime}$ which is determined above through the trianglo $\boldsymbol{p} \mathbf{R} \mathbf{Q}$ is not the exact one, because, in that triangle the angle $p \mathbf{Q} \mathbf{R}$ is assumed equal to the co-latitude of the given place, but it cannot be exactly equal to that, and consequently the time $\rho^{\prime} Q^{\prime}$ thus determined cannot be the exact time. But no considerable error is caused in the time $p^{\prime} Q^{\prime}$ thus found, if the latitude be of a planet, as it is alwaye small. As to the star whose latitude is considerable, the time $p^{\prime} Q^{\prime}$ thus found cannot be the exact time. The exact time can be found as follows.

Seo the preceding Igure and in that take \mathbf{R} for a star and p the intoreocting point of the ecliptic, and the circle of declination passing through the star \mathbf{R} then $\boldsymbol{p} \boldsymbol{p}^{\boldsymbol{\prime}}$ is called the mean declination of the star, $\mathrm{R} \boldsymbol{p}$, the rectified latitude and $\mathrm{R}_{\boldsymbol{p}} \boldsymbol{p}^{\boldsymbol{\prime}}$ the rectified declination.

Now, find the ascensional difference $\mathbf{E} \boldsymbol{p}^{\boldsymbol{p}}$ through the mean declination $\boldsymbol{p} \boldsymbol{p}^{\boldsymbol{p}}$ and the ascensional difforence $E Q^{\prime}$ through the rectified declination $R p^{\prime}$ or $Q Q^{\prime}$. Find the difforence botween these two ascensional differencoe and this difference will be oqual to $\boldsymbol{p}^{\prime} \mathbf{Q}^{\prime}$ i. e. $\mathbf{E} \mathbf{Q}^{\prime}-\mathrm{R} \boldsymbol{p}^{\prime}=\boldsymbol{p}^{\prime} \mathbf{Q}^{\prime}$. But it occurs then whon p and R are in the same side of the equinoctial $\mathbf{P} G$ and whon p is in one side and \mathbf{R} in the other of the equinoctial, it is ovident that $p^{\prime} \mathbf{Q}^{\prime}$ in this case will be equal to the sum of the two ascensional differoncos.-B. D.]

- This rule is admitted by Bhískabíonárya to be incorreot; but the error being small, is neglected. Instead of using the DYOJYß, the Yasupi should lave been adopted.

Omission of the last mentioned correction or reduction of Celestial latitude to its value in deolination, by Braumagupta and others.
and other early astronomers to its value in declination : and the reason of this omission, seems to have been its smallness of amount. And also it is the uncorroctorl latitnde which is used in finding the half duration of the eclipses and in their projections \&c.
12. As the constellations are fixed, thoir latitudes as given in the books of these early astronomers are the spasinfs^{\prime} aras, i. e. the reduced values of the latitudes so as to rendur them fit to be added to or subtracted from the declination; and the dhruvas or longitude of these constellations are given, after being corrected by the Íyana drikiarma so as to suit those corrected latitudes that is, the star will appear to rise at the equator at the same time with longitude found by the correction.

Lot ad be equinootial and P the oquinootial pole,
ab=Ecliptio,
b: Colestial lutisude,
b $0=$ Celestial latitude reduced to ite value in declination is ropi,

- $0=$ bHOJA being aro of diurnal circle e εg
- $c=k b$ portion of diurnal cirole of the plunet's longitude at b.
The triangle $s 0 b$ or $s k b$ is assumed to be i diavalamajá tuyabra.
The angle : $b e=$ ípasa-varana or the angle of the inclinution of b which goes to ecliptio pole with bc which goes to equinoctial pole.

Hence thia triangle s $b a$ is called dig.valanají
rexises, the angle ob b varying with the ifana-valana. If b were at the lat Oanoer, then the north line $a b o$ which goes to the pole would go also to the eoliptio polo.
 being both represented by $b o$ would be the same. To the longitude of a star boing 270°, its $\triangle 8 P a b u T A$ and spashita sira would be tho same.-L. W.
['he rule stated in this vorse is founded upon the following principle.
Assuming the triangle s $b o$ as a plane right-angled triangle and the angle - bo, as the deolination of the point of the ecliptic chree sigus in adrance of the planet's corresponding place, beoause this dectination is nearly equal to the SYANA-VALARA, we have,
$\sin s$ cb:cos sbc=bs:ba;
or \mathbf{B} : Yasemi or uearly the cusine of the declination of the planet's place $8^{\circ} 0+$ = Culestial latitude : rectifiod latitude.-D. D.]
13. 'Ihose astronomers, who have mentionod that celestial latitude is an arc of a circle of declination, are stupid. Were the celestial latitude nothing more than an arc of a circle of declination, then why should they or others have ever had recourse to the dyana drikearma at all? (The planets or stars would appear on the six o'clock line at the timo that the corresponding degree of the ecliptic appeared there.)
14. How moreover have these same astronomers in delineating an eclipse marked off the Moon's latitude in the middle of the eclipse on spashfa-vaiana-sútra or on the line denoting tho secondary circle to the ecliptic? and how also have they drawn perpendicularly on the valana-bgtra or the line representing the ecliptic, the latitudes of the Moon at the commencement and termination of the eclipse.
15. How moreover, have they made the latitude котi, i. e. perpendicular to the ecliptic and thus found the half duration of the cclipse? If the latitude were of this nature, it would never be ascortained by the proportion (which is used in finding it).
16. A certain astronomor has (first) orroneously stated the

Censure of the astronomers who erroneously used the versed sine in the Depixkarma and valasa. drikiarma and valana by the versed sine. This course has been followed by others who followed him like blind men following each othor in succossion: [without seoing their way].
17. Brathaqupta's rule, however, is wholly unexceptionable, but it has been misinterpreted by his
Praise of Bratimaguta. followers. My observations cannot be said to bo presumptuous, but if they are alleged to be so, I have only to request able mathematicians to woigh thom with candour.
18. The drikicarma and valana found by the former astro-
nomers through the versod sine are erroneous: And I shall now give an instance in proof of their error.

19 and 20. In any place having latitude less than $24^{\circ} \mathrm{N}$.

An instance in proof of the error.
multiply the sine of the latitude of the place by the radius and divide the product by the sine of 24° or the sine of the obliquity of the ecliptic and take the arc in degrees of the result found. And find the point of the ecliptic, the degrees just found in advance of the 1st Aries. Now, if from this point the planet's corresponding point on the ecliptic throe signs backwards or forwards, be on the western or eastern horizon respectivoly, then the ecliptic will coincide with the vertical circle, and the horizon will consequently be secondary to the ecliptic. Hence the planet will not quit the horizon, though it be at a distance, of extreme latitude from its corresponding point in the ocliptio [which is on the horizon], as the celestial latitude is perpendicular to the ecliptic.*
21. In this case the resulted times of the drikiarma being of exactly the same amount but one being plus and the other minus, neutralize each other [and hence there is no correction]. Now this result would not be obtained by using the versed sine-hence let the right sine (as prescribed) be always used for the drikiaria.

[^48]22. Again here, in like manner, it is from the two valanas having different denominations, but equal values, that they mutually destroy each other. By using the versed sine, they would not have equal amounts, hence the valanas must be found by the right sine.
[In illustration of the fact that the valana does not correspond with the versed sine, but the right sine Bheskaracharya gives as an examplo.]
23. When the Sun comes to the zenith [of the place where the latitude is less than 24°], and consequently the ecliptic coincides with the vertical circle, the spasifa valana then evidently appears to be equal to the sine of the amplitude of the ecliptic point 90° in advance of the Sun's place in the horizon. If you, my friend, expert in spherics, can make the spashta valana equal to the sine of amplitude by means of the versed sine, then I will hold the valana found in the Dhívpiddhida tantra by Lalla and in the other works to be correct.
[To this Bháskaracharya adds a further most important and curious illustration:]
24. In the place where the latitude is $66^{\circ} \mathrm{N}$. when the Sun at the time of his rising is in 1st Aries, 1st Taurus, 1st Pisces, or in 1st Aquarius, he will then be eclipsed in his southern limb, because the ecliptic then coincides with the horizon. Therefore, tell me how the spasita valana will be equal to tho radius by means of the versed sine !
[In the same mannor the drikrarya calculation as it depends on the valana, must be made by the right sine and not by the versed sine and for the same reasons.]
25. Even clever men are frequently led astray by conceit

Cause of error in Larua in their own quick intelligence, by and others, statod. their too hasty zeal and anxiety for distinction, by their confidence in others and by their own negligence or inadvertence, when it is thus with the wise, what need I say of fool? others, however, have said :-
26. Those given to the service of courtezans and bad poets,
are both distinguished by their disregard of the criticisms and reflections of the world, by their breach of the rules of time and metres, and their destruction of their substance and of their subject, being beguiled by the vain delight they feel towards the object of their taste.

End of Chapter IX. called Drixkarma-vasank.

CHAPTER X.

Called S'ringonnati-visans in explanation of the cause of the Phases of the Moon.

1. This ball of nectar the Moon being in contact with rays of the Sun, is always illuminated by her shinings on that side turned towards the Sun. The side opposite to the Sun dark as the raven black locks of a young damsel, is obscured by being in its own shadow, just as that half of a water-pot which is turned from the Sun, is obscured by its own shadow.
2. At the conjunction, the Moon is between us and the Sun : and its lower half which is then visible to the inhabitants of the earth, being turned from the Sun is obscured in darkness.

That half again of the Moon when it has moved to the distance of six signs from the Sun, appears to us at the period of full Moon brilliant with light.
3. Draw a line from the earth to the Sun's orbit at a distance of 90° from the Moon, and find also a point in the Sun's orbit (in the direction where the Moon is) at a distance equal to that of the Moon from the earth. When the Sun reaches the point just found, he comes in the line perpendicular at the Moon to that drawn from the earth to the Moon. Then the Sun illumines half of the visible side of the

Moon. That is when the Moon is 85°. . 45° from the Sun east or west, it will appear half full to us.*
4. The illuminated portion of the Moon gradually increases as it recedes from the Sun : and the dark portion increases as it approaches the Sun. As this sea-born globe of water (the Moon) is a sphere, its horns assume a pointed or cuspod appenranco (varying in acutoness according to its distanco from the Sun).
5. (To illustrate the subject, a diagram should be drawn $\begin{array}{ll}\text { Diagram for illustrating as follows). Let the distance north and } \\ \text { the anbject. } & \text { south between the Sun and Moon re- }\end{array}$ south between the Sun and Moon represent the bHojs, the upright distance between them the sort and the line joining their centres the hypothenuse. The Sun is in the origin of the bHuJs which stretches in the direction where the Moon is, the line perpendicular at the end of the beuja is kopi at the extremity of which is the Moon and the line stretching (from the Moon) in the direction of the Sun is the hypothenuse. The Sun gives light' (to the Moon) through the direction of the hypothonuso.

[For instance

Let S be the Sun and m the Moon, then $a S=$ bhuja, $a m=$ кот1, $m S=$ hypothenuse. Then $f g$ a line drawn at right anglos to extremity of hypotenuse will roprosont lino of direction of the enlightened horns and the angle $h m d$ opposite to bhuja will be equal to $<g m c=$ the amount of angle by which the northern cusp is elevated and southern depressed,were the Moon at k, there would be no elevation of either cusp either wny. For the hypothenuse will also bisect the white part of the Moon. If the Sun is norlh of the Moon, the north ensp of the Moon is elevated : if south tho southorn cusp. 1.. W.]
[Mr. Wilkinson has extracted the following two verses from the Ganitikdiykya.
I. When the latitude is $66^{\circ} \mathrm{N}$. and the Sun is rising in 1st Aries, then the ecliptic will coincide with the horizon; now suppose the Moon to be in 1st Capricorn, thon it will appenr to be bisected by the meridian and the eastern half will be enlightened.

But according to Brahmagupta this would not occur, for he has declared that the kopi will be equal to radius in this case whereas it is obviously "nil," and it is the bhusa which is equal to radius when there is no north and south difference
between the Sun and Moon then the kots would be equal to the hypothenuse or radius and the bHuJa would be "nil."
II.* And the Moon's horns are of equal altitude when there is no bHOJA, whilst they become perpendicular when there is no кofi. That the cofi and bruja shall at one and the same time be equal to radius is an obvious incompatibility. But what business have I with dwelling on the exposure of these errors? Bhaumaqupta has here shown wisdom indeed, and I offer him my reverent submission l]
6. I have thus only briefly treated of the principles of the subjects mentioned in the Chapters on Madiyagati \&c. fearing to lengthen my work; but the talented astronomer should undorstand the principlos of all the subjects in completion, because this is the result to be obtainod by a complete knowledge of the spheric.

End of Chapter X. called S'bingonnati-vasané.

CHAPTER XI.

Called Yantradiyaya, on the use of astronomical instrumonts.

1. As minute portions of time elapsed from sun-rise cannot be ascertained without instruments, I shall thoreforo briofly detail a fow instruments which are of established use for this purpose.
2. The Armillary sphere, nadi-valaya (the equinoctial), the yashifi or staff, the gnomon, the ghati or clepsydra, the circle, the semi-circle, the quadrant, and the phalaka: but of all instrumonts, it is "inarnurty" which is tho best.
[^49]3 and 4. (This instrument is to be made as bofore de-
Use of Armillary Sphere. scribed, placing the Bhagola starry sphere, which consists of the ecliptic, diurnal circles, the Moon's path, and the circles of declination \&c. within the khagora celestial sphero, which consists of the horizon, meridian, prime vertical, six o'clock line, and other circles which remain fixed in a given latitude). Bring the place of the Sun on the ecliptic to the eastern horizon : and mark the point of the equinoctial (in the bHagola) intersected by the horizon, viz. east point. Having made the horizon as level as water, turn the bhagola westward till the Sun throws its shadow on the centre of the Earth. The distance between the mark made on the equinoctial and the now eastern point of the horizon will represent the time from sun-rise.

5 and 6. 'Jho laana or horoscopo will thon bo found in that point of the ecliptic which is cut by the horizon.

Tako a wooden circlo and divido its ontor rim into 60 allaof the ecliptic on both sides, but instead of making each sign of equal extent, they must be made each with such variable ares as shall correspond with their periods of rising in the place of obsorvation (the twelvo periods are to be thus marked on oither sido, which aro to bo again each subdivided into two norks (or hours), throe deksirEKNAS, into NAVKNs'As or ninths of $3^{\circ} \ldots 20^{\prime}$ each, twelfths of 2°. 10^{\prime} and into trins' $K N s^{\prime} A \operatorname{s}$ or thirtieths. These are called the shapvarga or six classes). These signs, however, must be inscribed in the inverse order of the signs, that is 1st Aries, then Taurus to the west or right of Aries and so on. Then place this circle on the polar axis of the khagola at the centre of the Earth (the polar axis should be elevated to the height of the pole).

Now find the Sun's longitude in signs, degrees, \&c. for tho sun-rise of the given day (by calculation) and find the same degree in the circle. Mark thore the Sun's place, turn the
circlo round the axis, so that the shadow of the axis will fall on the mark of the Sun's place at sun-rise and then fix the circle. Now as tho Sun rises, the shadow of tho axis will advanco from the mark made for the point of sun-rise to the nadir and will indicate the hour from sun-rise, and also the lagna (horoscope) : the number of hours will be seen between the point of sun-rise and the shadow : and the ragna will be found on the shadow itself. [Whilo tho Sun goes from enst to west tho

shadow travels from west to east and hence the signs with their periods of rising must be reversed in order-the are from W to Lagna represents the hour arc: and the Lagna is at the word Lagna in the accompanying figure.-L. W.]
7. Or, if this circle marked as above, be placed on any axis elevated to the altitude of the pole, then the distance from the shadow of the axis to the lowest part of the circle will repre~ sent the time to or from midday.
8. A abati made of copper like the lower half of a waterpot, should have a large hole bored in its bottom. See how often it is filled and falls to the bottom of the pail of water on which it is placed. Divide 60 araprs of day and night by the quotient

$$
\text { P } 2
$$

and it will give the measure of the clepsydra. (If it is filled 60 times, then the ghati will be of one ghation; if 24 times it will be of one hour or $2 \frac{1}{2}$ anatikes.)
9. For a gnomon take a cylindrical piece of ivory, and lot it be turned on a latho, taking caro
that the circuinferonce be equal above and below. From its shadow may be ascertained the points of the compass, the place of observer, including latitude \&c. and times (as has been elsewhere explained).
10. The circle should be markod with 360° on its outor

The ofirra or circle.
circumferonce, and should bo sus-
pended by a string or chain moveable
on the circumference. The horizon or Earth is supposed to be at the distance of three signs or 90° from the point at which it is suspended: the point opposite to that point being tho zonith.
11. Through its centre put a thin axis: and placing tho circle in a vertical plane, so as to catch the shadow of the Sun : the degrees passed over by the axis from the place denominated the Earth, will be altitude :
12. And the arc to the point denominated the zenith, will be that of the zenith distance.

Some former astronomers have given the following rule for making a rough calculation of the time, viz. multiply tho lulf length of day by the obtained altitude and divide the product by the meridian altitude, the quotient will be the time sought.
13. First let the circle be so held or fixed that any two

To find the longitudee of of the following fixed stars appear to plenote by the circlo. touch tho circumforonco, viz. Maahk (a Leonis, Regulus), Pushya (δ Cancri), Revatf (ζ Piscium) and S'atatarax\& (or λ Aquarii). [These stars are on the ecliptic and having no latitude, are to be preferred.] Or, that any star (out of the Chirrk or a Virginis Spica \&c.) having very inconsiderable latitude, and the planet whose longitude is required and which is at a considerable distance from the star, appear to touch the circumference.

14 and 15. Then look from the bottom of the circle along its plane, so that the planet appear opposite the axis ; and still lolding it on the plane of the ecliptic, observe also any of tho above mentioned stars. The observed distance between the planet and the star, if added to the star's longitude, when the star is west, and subtracted when east of the planet, will gire the planet's longitude.

The half of a circle is called a cHiN1A or semicircle. The half of a semicircle is called turíya or a quadrant.
16. As others have not ascertained happily the apparent time by observations of altitudes in a vertical circle, I havo therefore laboured myself in devising an instrument called phalaka yantra, the uses of which I now proceed to explain perspicuously. It contains in itself the essence of all our calculations which are founded on the true principles of the Doctrine of the Sphero.
17. I Briskara now proceed to describe this excellent

Addresses to the Sun. instrument, which is calculated to remove always the darkness of ignoranco, which is morcover the delight of clever astronomors and is founded on the shadow of its axis: it is also eminently serviceable in ascertaining the time, and in illustrating truths of astronomy, and therefore valued by the professors of that scienco. It is distinguishod by having a circlo in its centre. I proceed to describo this instrument after invoking that bright God of day, the Sun, which is distinguished by the epithets I have above given to the instrument viz. he is eternal and removes obscurity and cold : he makes the lotus to flower and is ever shining: he easily points out the time of the day and season and year, and makes the planets and stars to shine. He is worthy of worship from the virtuous and resides in the centre of his orl.*

[^50]18. Let a clever astronomer make a phalaka or board of a plane rectangular and quadrilateral form, the height being 90 digits, and the breadth 180 digits. Let him halve its breadth and at the point thus found, attach a moveable chain by which to hold it: from that point of suspension let him draw a perpendicular which is celled the lamba-rekif.
19. Let him divide this perpendicular into 90 equal parts which will be also digits, and through them draw lines parallel to the top and bottom to the edges : these aro called sines.
20. At that point of the perpendicular intersected by tho 30th sine at the 30 th digit, a small holo is to bo bored, and in it is to be placed a pin of any length which is to be considered as the axis.
21. From this hole as centre draw a circle (with a radius of 30 digits : the circle will then cut the 60th sine), 60 digits forming the diameter. Now mark the circumforenco of this circle with 60 amatis and 360 dogreos, onch degreo boing subdivided into 10 palas.
22. Let a thin pafticí or index arm with a hole at one end be made of the length of 60 digits and let it be so marked. [The breadth of the end where the hole is bored should be of one digit whilst the breadth of the whole PATTIKA be of half digit. Let the paptik\& be so suspended by tho pin abore mentioned, that one side may coincide with the lamba-rexik. The accompanying figure will represent the form of the paptika.

The rough ascensional difference in palas determined by the mhanpakas or parts, being divided by 19 , will hero become the sine of the ascensional difference (adapted to this instrument.*)
best authore occasionally indulge. All the epithets given to the instrument apply in the original also to the Sun. This kind of double meaning of courso does not admit of translation.-L. W.

- The sines of ascensional difference for each sign of the ecliptic were found by the following proportions.

23. 'I'he numbers $4,11,17,18,13,5$ multiplied soverally by the aksha-karna and divided by 12 , will be the khanpakas or portions at the given place ; each of these being for each 15 degrees (of bнuja of the Sun's longitude) respectively.
24. Now find the Sun's true longitude by applying the precession of the equinoxes to the Sun's place, and adding together as many portions as correspond to tho biuja of the Sun's longitude abovo found, divide by 60 and add tho quotiont to aksha-karna. Now multiply the result by 10 and divide by 4 (or multiply by $2 \frac{1}{4}$). The quotient is here called the yashti in digits and the number of digits thus found is to be markod off on the arm of the paftiks counting from its hole penetrated by the axis.
25. Now hold the instrument so that the rays of the Sun shall illuminate both of its sides (to secure its being in a vertical circle) : the place in the circumference marked out by the shadow of the axis is assumed to be the Sun's place.
26. Now place the index arm on the axis and putting it ovor tho Sun's placo, from the point at the ond of the yasirti set off carefully above or below (parallel to the lamba-rexhí) on the instrument, the sine of the ascensional difference above found, setting it off above if the Sun be in the northern
27. If cosine of latitude $:$ sine of lat. \}: $:$ what will aine of deolination of 1 or as 12 : PALABHA' $\} \quad$ sign or 2 or 8 signs, give.
28. If cosine of declination : this result : : what will radius a sine of asceneional difiuronco in xalís.

The aro of this will give asconsional difference. This is the plain rule a but Bra'skana'olia'rya had recourse to another short rule by which the ascensional differences for 1,2 and 3 signs, for the place in which the paiabia' was 1 digit, were 10, 8, 8f palas. These three multipliod by palabil' would give the asconsional differences with tolerable accuracy for a place of any latitude not having a greater palabui than 8 digits. Not take those throe paliticaiss $10,8,8\}$ and multiplied by six, then the patas of time will be reduced to 1808. Thiese are found with a radius of $\mathbf{3 4 3 8}$: to reduce them to the ralue of a radius of 80 digits say,
As 8438 : $10 \times 6=60^{\prime}:: 80$ digits : $\frac{60 \times 30}{3438}=$ quantity of onARA for 1
eign in this instrument, but instead of multiplying the $\mathbf{1 0}$ by $\mathbf{6 \times 8 0}$ or $\mathbf{1 8 0}$ and dividing by 3438 , the author taking $180=$ if part of 3438 , divides at once by $19 .-$ L. W.
hemisphere, and below if it be in the southern hemisphero. The distance from the point where the sine which meeting the end of the sine of the ascensional differonce thus sot off, cuts the circle, to the lowest part of tho circle will roprosent tho airapis to or after midday.*

- In the accompanying diagram of the phalaza yAmpa, 0 is the centre of the circle aboand the line ompacsing through 0 is called madryajya' or middle sine. If the ahadow of the pin touches the circumference in 8 whon the instrument is held in the vortical cirole passing through the Sun, 86 will then be the zenith distance of the Sun. From this the time to or after midday can bo found in the following manner.

Let a = altitude of the Sun,
$\boldsymbol{d}=$ declination,
$\Delta=$ ascensional difference,
$l=$ north latitude of the place,
$p=$ degrees in time to or after midday.
Thon, we have the equation which is common in the astronomical works,

$$
\begin{aligned}
\cos p & =\frac{\mathbf{R}^{x} \cdot \sin a \mp \mathbf{R} \cdot \sin l \cdot \sin d}{\cos l \cdot \cos d} ; \\
& =\frac{\mathbf{R}^{2} \cdot \sin a}{\cos l \cdot \cos d} \mp \frac{\tan l \cdot \tan d}{\mathbf{R}} ;
\end{aligned}
$$

here, when the latitude is north, the eecond term becomes minus or plus as the dealination is north or south respectively.

But $\frac{\tan l \cdot \tan d}{\mathbf{R}}=\operatorname{ain}$ A or sine of ascensional difference.

$$
\therefore \quad \cos p=\frac{\mathbf{R}^{2} \cdot \sin a}{\cos l \cdot \cos d} \mp \sin . A .
$$

27. Set off the time from midday on the instrument To find the placo of the counting from the Lamba-resid ; from shadow of axis from time. the end of the sine of this time, set off the sine of ascensional difference in a line parallel to the

$$
\begin{aligned}
& \text { Now, cos l: R }=12: \text { i. e. afshafarna (See Chapter VII. v. 45.) } \\
& \text { or } \frac{R}{\cos l}=\frac{h}{12} \text {, } \\
& \therefore \cos p=\frac{h}{12} \cdot \frac{\mathbf{R} \cdot \sin a^{\prime}}{\cos d} \mp \sin A \\
& =y \cdot \frac{\sin a}{\mathbf{R}} \mp \sin A \text {, when } y=\frac{h}{12} \cdot \frac{\mathbf{B}^{2}}{\cos d} \text {, which is called }
\end{aligned}
$$ rasirit and can be found as follows.

$$
\begin{aligned}
y & =\frac{h}{12} \cdot \frac{R^{:}}{\cos d}=\frac{R}{18} \cdot \frac{\pi}{18} \cdot \frac{12 R}{\cos d}, \\
& =\frac{R}{12} \cdot \frac{h}{18}\left(18+\frac{18 \text { rersed } d}{\cos d}\right)
\end{aligned}
$$

When the beuja of the Sun's longitude is $\mathbf{1 5}, \mathbf{3 0}, \mathbf{4 5}, \mathbf{6 0}, \mathbf{7 5}, 90$, the value of 12 versed d
cos d
these values are $4,11,17,18,13,5$ which are written in the text. Multiply theare ilifforenees by h or tho aksiraxarna, divido tho products by 12 and the quotionts thins found aro called the xiranpas for the given place. By assuming the biroja of the Sun's longitude as an argument, find the result through the xitanyas and take r for this rosult.

$$
\begin{aligned}
\text { Then } \frac{r}{60} & =\frac{\hbar}{12}\left(\hbar+\frac{r}{60}\right), \\
\text { and hence, } y & =\frac{\frac{r}{12}}{12}\left(\hbar+\frac{r}{60}\right) .
\end{aligned}
$$

Bat in this instrument $\mathbf{R}=\mathbf{8 0}$
$\therefore y=\frac{10}{4}\left(k+\frac{r}{60}\right)$ which exactly coincide with the rule given in the text for determining the yasury.

The value of the xasirfi will certainly be more than $\mathbf{8 0}$, because the value of the AKBRATARNA or h is more than 12.

Now, (see the diagram) suppose m is the end of the fasirfi in the Patfixi or indox o m which touchos tho circle in 8, thon, in tho triauglo omms

$$
\begin{aligned}
\mathbf{R}: 0 m & =\sin m o n: m n ; \\
\mathbf{B}: y & =\sin a: m n ; \\
\therefore m n & =\frac{y \times \sin a}{\mathbf{R}} ; \\
\text { and honce, } \cos p & =\{n+\sin A,
\end{aligned}
$$

lamba-rekhí, but below and above according as it was to bo set off above or below in finding the time from the shadow, (this operation being the reverse of the former). The sine met by the sine of ascensional difference, thus set off, is the new sine across which the paftike or index is now to bo placed till the yashfi-chinha or point of yashfi falls on it. Ihis position will assuredly exhibit the place of the shadow of the axis.

28, 29 and 30. Having drawn a circle (as the horizon) with and west line) and mark off (from them) the amplitude at the east and west. Draw a circle from the same centre with a radius equal to cosine of doclination i. ©. with a radius of diurnal circle, and mark this circle with 60 anapis. Now tako the yasmer, oqual to the radius (of tho groat circlo) and hold it with its point to the Sun, so that no shadow be reflected from it ; the other point should rest in the centre. Now measure the distance from the end of the amplitude to the point of the yasefi when thus held opposite to the Sun. This distance applied as a chord within the interior circle will cut off, if it bo before midday, an arc of the number of aliatikís from sunrise, and if after midday an arc of tho time to sum-sot.*
that is, the sine of the ascensional difference is subtracted from or added to $m \mathrm{~m}$ the distance between tho end of the Yasifi and tho middle sine, as the Bun bo in the north or the south to the equinoctial.
Δ gain, by taking $m r$ equal to sin Δ we have,

$$
\begin{aligned}
& =000 \mathrm{O} \text {, } \\
& \therefore \quad p=0 t \text {-B. D.] }
\end{aligned}
$$

[^51]31. The porpendicular lot fall from the point of the vasiti To find the palamia with is the s'anko or sine of altitude: the the rasitit. place betwoen the s'anru and centre is equivalent to driayk or sine of zenith distance. The sine of amplitude is the line between the point of horizon at which the Sun rises or sets, on which the point of the yashit will rost at sun-rise and sun-set, and the east and west line the pleschyaliak.
32 and 33 . The distance between the s'anku and the udayketa-sutra, multiplied by 12 and divided by the s'anku, will be the palabhe.
Take two altitudes of the Sun with the Yashifi: observe the s^{\prime} ankus of the two times and the bhojas.

Add the two bhojss, if one be north and the other south, or subtract if they be both of the same denomination : multiply the above quantity (whether sum or difference) by 12 and divide by the difference of the two s^{\prime} ansos, the result will be the palabhd.* The difference between the east and west line and the root of sianku is called biuja.

- [Lot O bo the cast or west point of the horizon $\mathrm{O} a, \mathrm{Z}$ the zenith, a \& S the

diurnal circlo on which \mathbf{S} and s are the Sun's two places at different times and $8 n^{n}$ and $a n$ the $s^{\prime} \Lambda n r \operatorname{ser}$ or the sines of altitudes of the Sun, then $0 m, n n$ will be the puldsas, $n m$ or $s p$ the difference between the buojas and $8 p$ the difierenco

If the $s^{\prime} A N K U$ be observed three different times by the

To find palabia', deelination, time, \&o. from three observations by tho YasuTI, of three $\mathrm{B}^{\prime} \mathrm{A}^{2} \mathrm{MEDS}$.
yashiti, then the time, declination \&c. may be found (by simply observing the Sun).
34. First of all find three asankus: draw a line from the top of the first to the top of the last; from the top of the second $a^{\prime} \quad$ anku, draw a line to the eastern point and a line to the western point of the horizon, so as to touch the first line drawn.
35. A line drawn so as to connect these two points in the horizontal circumforonco will be tho unayksta súrina. 'Tho distance between it and the centre will give the sine of amplitude. The line drawn through the centre parallel to the odr-ksta-sútra at the distance of the sine of amplitude is the east and west line.*
36. Find the palabhí as before (and also tho akseaearna). Now the sine of amplitude multiplied by 12 and
 again multiplied by the radius and divided by the sine of 24° or the sine of the Sun's greatest declination, will give the sine of the pHuJA of the Sun's longitude.

37 and 38. Which converted into degrees is Sun's longitude, if the observation shall havo boon made in the lst quarter of the year. If in the second quarter, the longitudo will be found by sultracting tho degroos found from 0 signs: if

[^52]in the 3rd quarter, 6 signs must bo added : if in the fourth quarter of the year, then the degrees found must be subtracted from 12 signs for the longitude.

The quarters of the year will be known from the seasons, the peculiarities of each of which I shall subsequently describe.

It is declared (by some former astronomers) that the shadow of the gnomon revolves on the circle passing through tho ends of the three shadows made by the same gnomon (placed in the contro of the horizon), but this is wrong, and consequently the east and west and north and south lines, the latitudes \&c. found by the aid of the circle just mentioned are also wrong.*
39. Whether the place of the Sun be found from tho shadow or from the sino of tho amplitude, it will be found corrected for precession. If the amount of precession be subtracted, the Sun's true place will be found. If the true place of the Sun be subtracted, the amount of precession will bo ascertained.
40. But what does a man of genius want with instruments

The praise of instrument called duíranten or genius instrument. about which numerous works have treated? Let him only take a staff in his hand, and look at any object along it, casting his eye from its end to the top, there is nothing of which he will not then tell its altitude, dimensions, \&c. if it bo visiblo, whether in the heavens, on the ground or in tho water on the earth.

Now I proceed to explain it.
41. He who can know merely with the staff in his hand, the height and distance of a bamboo, of which he has observed the root and top, knows the use of that instrumont of instru-ments-genius-(the dHíyantba) and tell me what is there that

[^53]he cannot find out. [Here the ground is supposed to be perfectly level.]
42. Direct the staff lengthways to the north polar star ; let drop-lines fall from both ends of staff, when thus directed to the star. Now the space between the two drops is the Bhusa or base of a right angled triangle, when the difference between the lines thus dropped is the котi or perpendicular.
43. The kopi multiplied by 12 and divided by tho biusa gives the palabita.*

Having in the same way observed the root of tho bamboo ; [and in so doing found the bHuJa and котi], multiply the bHuja by the height of the man's eye.

44 and 45 . And divide the product by the кopi, the result
To find the distanco and is, you know tho distanco to tho root height of a bamboo. of the bamboo.
Having thus observod the top of tho bamboo (with the staff, and ascertained the bHuJa and кOTI), multiply the distance to the root of the bamboo by the котr, and divide the product by the bHUJA, the result is the height of the bamboo above the observer's eye: this height added with the eye's height will give the height of the whole bamboo. \dagger

For instance, suppose the staff 145 digits long, the height of obsorvor's oyo 68 digits; that in making the lower observation the bhusa $=144$ digits $=6$ cubits, and кoti $=17$. digits ; that in making the obsorvation of the top of the banboo, the muuss $=$

- i. e. If this bioja : gires the xopi
: : 12 digite of gromon : gives the palabra'.

[^54]116 digits and котı $=87$ digits. Then toll me the height of bamboo and the distance of it. As,
68×144
$\underline{17}=576$ digits or 24 culbits distance to bamboo; 17
576×87
and $\frac{116}{}=432$ height of tree above observer's eyo, (68 add tho oyo's hoight,

500 hoight of tree.
Let a man, standing up, first of all observe the top of an object: then (with a staff, whether it be equal to the former or not in length), lot him observo again the top of the samo oljoct, whilst sitting.
46. Then divide tho two kotis by their respective bhujas: take the difference of these quotients, and by it divide the difference of the heights of observer's eye-this will give the distance to the bamboo: from this distance the height of the bamboo may be found as before.*

is furnished at either ond with drop lines $a k, b \boldsymbol{k}: b \boldsymbol{k}-a \boldsymbol{k}=\boldsymbol{b} c=\sin$. of L. bac. Then say

Asbo:ac::be:de=fb.
Ho then observes ihs top of object and finds $g f$, which is easy, as $f b$ has been found. -L. W.

- bukszara foui.ds this rule on the following algebraic procoses.

47. There is a high famous bamboo, the lower part of which being concealed by houses \&c. was invisible: the ground, however, was perfectly level : If you, my friend, remaining on this same spot by observing the top (first standing and then sitting), will tell me the distance and its height, I acknowledge you shall have the title of being the most skilful of observers and expert in the use of the best of instruments dhíyantra.

The observer, first standing, observes the top of the bamboo and finds tho buusa, with tho first staff, to be 4 cubits or 96 digits : he then sits down and finds with another staff the bHuJs to be 90 digits. In both cases the ropi was one digit. Tell me, 0 you expert in observation, the distance of observer from the bamboo and the bamboo's height.
48. So also the altitude may be observed in the surface of smooth wator : but in this caso tho height of observer's eye is to be subtracted to find the true height of the object:-Or the staff may be altogether dispensed with : In which last case two heights of the observer's eye (viz. when he stands and sits) will be two kopis: and the two distances from the observer to tho

Let $x=$ base, distance to bamboo. Then say
if $96: 1:: x: \frac{x}{96}$: then $\frac{x}{96}+72=$ height of bamboo.
By recond obserration $90: 1:: x: \frac{\infty}{90}$, then $\frac{x}{90}+24=$ height of bamboo.
Then $72+\frac{x}{96}=24+\frac{\infty}{90} ; \frac{\infty}{90}-\frac{\infty}{96}=48$, or $\frac{6 x}{8640}=48$
$\therefore x=69,120$ digits
$=2880$ cubits.
That is $\frac{x}{90}-\frac{x}{96}=72-24$

places in the water whore the top of the object is reflected, the bhujss.
49. Having seen only the top of a bamboo reflected in water, whether the bamboo be near or at a distance, visible or invisible, if you, remaining on this same spot, will tell me the distance and height of bamboo, I will hold you, though appearing on Earth as a plain mortal, to have attributes of superhuman knowledge.

An observer standing up first observes (with his staff) the reflected top of a bamboo in water: The котı $=3$ digits and bhuja $=4$ digits. Then sitting down he makes a second observation and finds the buusa $=11$ digits and xopi $=8$ digits. His eye's hoight standing $=3$ cubits or 72 digits, and sitting $=1$ cubit or 24 digits. Tell me height of bamboo and its distance.*

- Let $d f=f 0=$ height of bamboo $=k b$
then b a or $y=$ height of bainboo and man's height together.
Let $b c=$ breadth of water $=x$
theu by firat observation

A man standing up sees the shadow of a bamboo in the water-the point of the water at which the shadow appears is 96 digits off: then sitting down on the same spot he again observes the shadow and finds the distance in the water at which it appears to be 33 digits : tell me the height of the bamboo and his distance from the bamboo.*

4: 3 : : x : y or $3 x=4$ or $x=\frac{4 y}{3}$
by 2nd observation 11: $8:: x: y-38$ digite
or $8 x=11 y-528$ or $x=\frac{11 y-528}{8}$
thus $x=\frac{4 y}{8}$ and $x=\frac{11 y-528}{8}$
$\therefore \frac{4 y}{8}=\frac{11 y-528}{8}$ or $4 y=\frac{33 y-1584}{8}$
or $32 y=33 y-1584$, or $y=1584$
$\therefore 1584-72=1512$ digits $=63$ cubits $=$ height of bamboo.
2nd part. To find width of water or x

$$
x=\frac{4 y}{3}=\frac{1584 \times 4}{3}=212 \text { digits }=88 \text { oubits. }-\mathrm{L} . \mathrm{W} .
$$

- Let $0 e=96$ digits
cd=33
$a c=72$
$b c=24$
let $x=$ distance from observer to bamboo.
Now ce:ac=jh:ja

$$
\text { or } 96: 72=x: y=\frac{72 x}{96}=\frac{8 z}{1}
$$

Thion $\frac{3 x}{1}-8=$ height of bamboo
Againcd:be::jh:jb

$$
\text { or } 33 \text { : } 24:: x: y-48=\frac{24 x}{33}
$$

$$
=\frac{8 x}{11}
$$

then $\frac{8 x}{11}-1=$ height of banbloo

50 and 51. Mako a wheel of light wood and in its circum-

A self-rovolving instrument or swayanvaira yarTRA. ference put hollow spokes all having bores of the same diameter, and let them be placed at equal distances from each other; and let them also be all placed at an angle somewhat verging from the perpendicular : then half fill these hollow spokes with mercury : the wheel thus filled will, when placed on an axis supported by two posts, rovolve of itself.

Or scoop out a canal in the tire of the wheel and then plastering leaves of the tria tree over this canal with wax, fill one half of this canal with water and other half with mercury, till the water begins to come out, and thon cork up the orifico left opon for filling the wheel. The wheel will then revolve of itself, drawn round by the water.

Make up a tube of copper or other metal, and bend it into
Description of a syphon. the form of an $\operatorname{ank} \mathrm{NB}^{\prime} \mathrm{A}$ or elephant hook, fill it with water and stop up both ends.
54. Aul thon putting one ond into a rosorvoir of wator, let the other end remain suspended outside. Now uncork both ends. The water of the roservoir will be wholly suckod up and fall outsido.
55. Now attach to the rim of the before described selfrevolving wheel a number of water-pots, and place the wheel and these pots like the water-wheel so that the water from tho lowor ond of the tube flowing into thom on ono side slanll sot the whool in motion, impelled by the additional weight of the pots thus filled. The water discharged from the pots as they reach the bottom of the revolving wheel, should be drawn

$$
\begin{gathered}
\quad \frac{8 x}{11}-1=\frac{8 x}{4}-8 \text { or } 2=\frac{8 x}{4}-\frac{8 x}{11}=\frac{x}{44} \\
\therefore x=44 \times 2=88 \\
\text { Then } y=\frac{3 x}{4}=\frac{3 \times 88}{4}=8 \times 82=66, \text { hoight of bamboo. } \\
\text { k } 2
\end{gathered}
$$

off into the reservoir before alluded to by means of a watercourse or pipe.
56. The self-revolving machine (mentioned by Lalla \&c.) which has a tube with its lower end open is a vulgar machino on account of its being dependant, becanse that which manifests an ingenious and not a rustic contrivance is said to be a machine.
57. And moreover many self-revolving machines are to be met with, but their motion is procured by a trick. They are not connected with the subject under discussion. I have been induced to mention the construction of these, merely because they have been mentioned by former astronomers.

Find of Chapter XI. called Yantraphyíya.

OHAPTER XII.

Description of the seasons.

1. (This is the season in which) the kokilas (Indian black Spring. birds) amidst young climbing plants, thickly covered with gently swnying and brilliantly verdant sprouts of tho mango (branchos) ruising their sweet but shrill voices say, "Oh travellers! how are you heart-whole (without your sweethearts, whilst all nature appears revelling) in the jubilea of spring chaitra, and the black bees wander intoxioated by the delicious fragrance of the blooming flowers of the sweet jasmine !"
2. The spring-born mallikí (Jasminum Zạmbac, swollen loy the pride she feels in her own full blown beautiful flowers) derides (with disdain her poor) unadorned (sister) mílatt (Jasminum grandiflorum) which appears all black soiled and without leaf or flawer (at this scason), and appears to beckon her forlorn sister to leave the grove and garden with her
tender budding arms, agitated by the sweet broezes from the fragrant groves of the hill of Malaya.
3. In the summer (which follows), the lovers of pleasure The arisima or mid-sum- and their sweethearts quitting their mer season. stone built houses, betake themselves to the solitude of well wetted cottages of the kus'akas ${ }^{\prime} \Delta$ grass, salute each other with showers of rose-water and amuse themselves.
4. Now fatigued by their dalliance with the fair, they proceed to the grove, where KאMA-drva has erected the (flowering) mango as his standard, to rest (themselves) from the glare of the fierce heat, and to disport themselves in the (avell shaded) wators of its bowris (or large wells with steps).
5. (The rainy season has arrived, when the deserted fair one thus calls upon her absent lover :) Why, my cruel dear one, why do you not shed the light of your beaming eye upon your love-sick admirer? The fragrance of the blooming milati and the turlid state of ovory prassing torront proclaims the soason of tho rains and of all-powerful love to have arrived. Why, theroforo, do your not havo compassion on my misorablo lot ?*
6. (Alas, cries the deserted wife, alas !) the peacocks (delighted by the thundering clouds) scream aloud, and the breeze laden with the honied fragrance of the radamba comes softly, still my sweet one comes not. Has he lost all delight for the sweet scented grove, has he lost his ears, has he no pity-bas he no heart?
7. Such are the plaintive accusations of the wife in the season of the rains, when the jet black clouds overspread the sky :-angered by the prolonged absence of him who reigns ovor her hoart, she charges lim, but still smilingly and sweetly, with being cruelly heedless of her devoted love.

[^55]8. The mountain burning with remorse at the guilt of

The síratiáia or meason having received the forbidden emof early sutumn. braces of his own poshpavati daughter, forest appears in early autumn through its bubbling springs and streams sparkling at night with the rays of the Moon, to be shedding a flood of mournful tears of penitence.
9. In the hemanta season, cultivators seeing the earth

Hrmanta or early winter. smiling with the wide spread harvest, and the grassy fields all belecked with the pearl-liko dow, and tooming with joyous hords of phump kine, rejoice (at the grateful sight).
10. When the s'isirs season sets in what unspeakable s'is'ras or olose of win- beanty and what sweet and endless tor. variety of red and purple does not tho ' Kacinnár' grove unconsingly prosent, whon its luaf' is in full bloom, and its bright glories are all expanded.
11. The rays of tho Sun fill midalay on the ourth, henco in this s'is'ira season, they avail not utterly to drive away the cold :

| | $*$ | $*$ | $*$ |
| :---: | :---: | :---: | :--- |$\quad *$ account of the six seasons, I have taken the opportunity of indulging my vein for poetry, endeavouring to writo somothing calculated to please the fancy of men of literary taste.

13. Where is the man, whose heart is not captivated by the ever sweet notes of accomplished poets, whilst they discourse on evory subject with refinoment and taste? or whoso hoart is not enchanted by the blooming budding beautios of the handsome willing fair one, whilst she prattles sweetly on every passing topic :-or whose substance will she not secure by her deceptive discourse?
14. What man has not lost his heart by listening to the pure, correct, nightingale-like notes of tho genuine poots? or who, whilst he listens to the soft notes of the water-swans on
tho shores of large and overflowing lakes well filled with lotus flowers, is not thereby excited?
15. As holy pilgrims delight themselves, in the midst of the streams of the sacred Ganges, in applying the mud and the sparkling sands of its banks, and thus experience more than heaven's joys : so true poets lost in the flow of a fine poetic frenzy, sport themsolves in well rounded periods abounding in displays of a playful tisto.

End of Chapter XII.

CIIAPTER XIII.

Containing useful questions called pras'nádhyáya.

1. Inasmuch as a mathematician generally fails to acquire Object of tho Chaptor and distinction in an assomblage of learned its praisc. men, unless well practised in answoring questions, I shall therefore propose a few for the entertainment of mon of ingenuity, who delight in solving all descriptions of problems. At the bare proposition of the questions, he, who fancies in his idle conceit, that he has attained the pinnacle of perfection, is often utterly disconcorterl anil appmilod, and finds his smiling chooks dasortod of thoir colour.
2. These questions have been already put and have been duly answered and explained either by arithmetical or algebraic processes, by the pulverizer and the affected square, i. e. methods for the solutions of indeterminate problems of the first and of the second degree, or by means of the armillary sphere, or other astronomical instruments. To impress and make them still more familiar and easy I shall have to repeat a few.
3. All arithmetic is nothing but tho rulo of proportion : Praiso of ingenious por- and Algebra is but another name for sons. ingenuity of invention. To the clever and ingenious then what is not known ! I, however, write for men and youths of slow comprehension.
4. With the exception of the involution and evolution of the square and cube roots, all branches of calculation may be wholly resolved into the rule of proportion. It indeed assumes many shapes, but it is universally provalent. All this arithmetical calculation donominated l'spis annira, which has been composed in many ways by the wisest of former mathematicians, is only for the enlightenment of simplo men like myself.
5. Algebra does not consist in the letters (assumed to represent the unknown quantities) : neither are the different processes any part of its ossential propertios. But Algolora is wholly and simply a talont and facility of invontion, bocauso the faculties of inventive genius are infinite.
6. Why, O astronomer, in finding the athranja, do you

Queation 1et. add saura months to the lunar months chatra \&c. (which may have elapsed from the commencement of the curront year) : and tell me also why the (fractional) remainders of adminksas and avaras are rejected : for you know that to give a true result in using the rule of proportion, the remainders should be taken into account.
7. If you have a perfect acquaintance with the mis' ${ }^{\prime} \mathrm{ka}$ or

Question 2nd.

 allegation calculations, then answer this question. Let the place of the Moon be multiplied by one, that of the Sun by 12 and that of Mars by 6 , let the sum of these three products be subtracted from three times the Jupiter's place, then I ask what aro tho revolutions of the planet whose place when added to or subtracted from the remainder will give the place of Saturn?8 and 9. In ordor to work this proposition in the first
Rule. place proceed with the whole numbers of revolutions of the several plancts in the KALPA, adding, subtracting and multiplying them in the manner mentioned in the question : then subtract the result from the revolutions of the planet given: or subtract the revolutions of the given planet from the result; according as the place of the unknown planet happen to be directed to be added or subtracted in the question. This remainder will represent the number of revolutions of the unknown planet in the ralpa. If the remainder is larger than the number from which it is to be subtracted, then add the number of terrestrial days in a kalish, or if the remninder excoed the number of torrestrial dnys in the Kalpa, then reduce it into the remainder by dividing it by the number of days in the ralpa.*

[^56]10. The algebraical learned, who knowing the sum of the additive months, subtractive days clapsed and their remainders, shall tell the number of days elapsed from the commencement of the ralipa, deserves to triumph over the student who is puffed up with a conceit of his knowledge of the exact pulverizer called say'slishfa united, as the lion triumphs over the poor trembling deer he tears to pieces in play.
11. For the solution of this question, you must multiply the given number of aulditive months, subtractive days and their remainders, by 863374491684 and divide by one less than the number of lunar days in a kalpa i. e. by 1602998999999 , the remainder will be the number of lunar days elapsed from the beginning of the kalpa. From these lunar days the terrestrial days may be readily found.*

```
or if \(60: 58:: 23: 2: 24\) Then \(2 . .24\) added
    to 2 .. 18
    still gives Saturn's place 5 .. 12
```

When $p=9-11$, then as 11 cannot be snbtracted from 9 the sum of 60 is added to the 9. The reason for adding $\mathbf{6 0}$ is thut this number is always be denominator of the fractional remainder in finding the place of the planets; for the proposition

If days of calpa : revolutions : : givon days give: here the daya of xalpa aro assumad to be 00 honce $\mathbf{t 0}$ is addod.-Id. W.

- [When the additive months and subtractivo days and their remainders aro given to find the abargana.

Let $l=1602999000000$ the number of lunar days in a xaLpa.
$\theta=159300000$ the number of additive months in a Kalya.
$d=25082550000$ the number of subtractive days in a Kalpa.
$\mathbf{A}=$ additive monthe elapsed.
$\boldsymbol{A}^{\prime}=$ their remaindor.
$13=$ subtractive days olapsed.
$B^{\prime}=$ their remainder.
$a=$ the given sum of the olapsed additive months, subtractive days and their remainders.
and $x=$ lunar days elapsed;

12. Givon tho sum of tho clopsod additivo months, sub-

Examplo. tractive days and their remainders, oqual (according to braimadurts's system) to 648426000171 ; to find the ahargana. He who shall answer my question shall be dubbed a "brahma-sid-dhanta-vit" i. e. shall be held to have a thorough knowledge of tho braima-siddinánta.*

$$
\begin{aligned}
& \therefore \mathrm{A}_{\mathrm{B}} l: \theta+d:: x: \mathbf{A}+\mathbf{B}+\frac{\mathbf{A}^{\prime}+\mathbf{B}^{\prime}}{l} \text { or } y+\frac{\mathbf{A}^{\prime}+\mathbf{B}^{\prime}}{l} \\
& \therefore \quad(e+d) x=l y+\mathbf{A}^{\prime}+\mathbf{B}^{\prime}, \text { or }(e+d) x-l y=\mathbf{A}^{\prime}+\mathbf{B}^{\prime}, \\
& \therefore \text { by addition, } \\
& (e+d) a-(l-1) y=\Lambda+B+A^{\prime}+B^{\prime}, \\
& \text { by substitution, } 26675850000 x-1602998999999 y=a: \\
& \text { now let, } \quad 26675850000 x^{\prime}-1602998999999 y^{\prime}=1 \text {, } \\
& \text { then wo shall have by the process of indeterminate problems } \\
& x^{\prime}=863374491684 . \\
& \Delta \text { gain, let } m=e+d \text { and } n=l-1 \text {, } \\
& \text { then } m a-n y=a_{i} \text { (1) } \\
& \text { and } \quad m x^{\prime}-n y^{\prime}=1 \text {; } \\
& \therefore \quad a m x^{\prime}-a n y^{\prime}=a \text {, } \\
& \text { and mnt-nnt=0: } \\
& \therefore m\left(a x^{0}-n t\right)-n\left(a y^{n}-m t\right)=a \text { : } \\
& \therefore x=a x^{\prime}-x i \\
& =863374491684 a-(l-1) t \text {. } \\
& \text { Hence the rule in the text.-B. D.] }
\end{aligned}
$$

- Solution. Tho givon sum $=\mathbf{6 1 8 1 2 6 0 0 0 1 7 1}$ and t he lunar days in a xalra $=1602995000000$:

$$
648426000171 \times 863874491684
$$

$$
\therefore \frac{1602998999999}{}=\begin{aligned}
& 849241932336 \\
& \text { and } 10300 \text { remainder : }
\end{aligned}
$$

$\therefore 10300$ these are lunar days elapsed.

\therefore From 10300 Lunar days
subtract 161 Subtractive days
remainder 10139 Terreatrial days or aifargana.
Now to find additive monthe olnpsed.
If lunar days $\}:$ additivo months $\}::$ lunar daya $\}: 10$ additive months and in a KALPA $\}$: of KALPA $\}:: 10300\}$: remn. 381000000000.
10 additive months $=300$ lunar days.
$\therefore 10300-300=100,00$ sAUPA days elapsed.
Hence 27 years 9 months and 10 days elapeed from the commencement of хаLPA.-LL. W.

13 and 14. Given the sum of the remainders of the revolutions, of the signs, degrees, minutes and seconds of the Moon, Sun, Mars, Jupiter, the s'íarrochchas of Mercury and Venus and of Saturn according to the dhfvriddidid, including the remainder of subtractive days in finding the aharaana, abraded (reduced into remainder by division) by the number of terrestrial days (in a YUas). He who, woll-skilled in the management of sphota kutfaka (exact pulverizer), shall tell me the places of the planets and the amaranan from tho abraded sum just mentioned, shall be held to be like the lion which longs to make its seat on the heads of those elephant astronomers, who are filled with pride by their own superior skill in breaking down and unravelling the thick mazes and wildernesses which occur in mathematical calculations.
15. If the given sum abraded by the number of terrestrial Rulis. days in a yuas, on boing dividod by 1 , leaves a remainder, then the question is not to be solved. It is then called a xHiLA or an "impossible" question. If, on dividing by 4, no remainder remain, then multiply the quotient by 293627203, and divide the product by 394479375 . The number remaining will give tho ahargana. If the day of the week does not correspond with that of the question, then add this amaranna to tho divisor (394479375) until the desired day of the week be found.*

[^57]16. Toll mo, my friond, what is the aharasna when on a Thursday, Monday or Tuesday, the 35 remainders of the revolutions, signs, degrees, minutes and seconds of the places of the planets, (the Sun, the Moon, Mars, Jupiter and Saturn and the s'farrochchas of Mercury and Venus) together with the remainder of the subtractive days according to the dhíviddimp, givo, whon abraded by tho number of terrestrial days in a yUGA, a remainder of 1491227500.*
17. The place of the Moon is of such an amount, Quetion 5th. that
$$
\text { The minutes }+10=\text { the soconds }
$$
tho minutos - soconds $+3=$ degrees
the degrees
$$
\frac{\text { aegrees }}{2}=\text { signs. }
$$
$\therefore x^{\prime}=293627208$ by the processes of indeterminate problems. Now let $a=64850242, b=394479375$, and $a=372806875$;
\therefore wo have the equations (A) and (B) in the forms
\[

$$
\begin{array}{ll}
& a x-b y=c: \\
\text { and } & a x^{\prime}-b y^{\prime}=1, \\
\therefore \quad & x=c \neq b \text { t (se0 the procoding noto) } \\
& =293627203 c-894479375 t:
\end{array}
$$
\]

as stated in the text.-B. D.]

- Solution. Tho givon sum of the $\mathbf{3 6}$ remainders in a YU氏A $=1491227500$ according to the DHiveIDDHIDA TANTRA.

$$
\therefore \quad 1491227500 \div 4=372806876:
$$

and $\therefore \underline{872808875 \times 293627203}$
894479375
ARARGANA.

the yual commenced on Friday.
This would be the aifargana on a Tuesday.
To find the arargana on Monday, it would be necessary to add the reducod terrestrial days in a ruan to this 10000 , till the remainder when divided by 7 was 8.

Monday :
$10000+394479375 \times 3 \quad 1183448125$
and $\frac{7}{7}=\frac{-}{7}=169064017-6$ remainder or $=$ Thursday.-L. W.

And the signs, dogrees, minutes and seconds together equal to l30. On the supposition that the sum of these four quantitios is of this amount on a Monday then tell mo, if you are expert in rules of Arithmetic and Algebra, when it will bo of the same amount on a Friday.*
18. Reduce the signs, degrees and minutes to seconds,

Rule.
adding the seconds, then reducing tho
terrestrial days and the planet's revolutions in a kalpa to their lowest terms, multiply the seconds of the planot (such as tho Moon) by the torrostrial days (roduced) and divido by tho number of soconds in 12 signs : then omitting the remainder, take the quotiont and add 1 to it, the sum will be the remainder of the bHaganas revolutions. \dagger

> Let $x=$ minutes
> then $\frac{x+20}{2}=$ seoonds
> $x-\frac{x+20}{2}+8=$ degrees.
> $x-\frac{x+20}{2}+8$
> $\frac{x}{8}=$ signs
and $x+\frac{x+20}{2}+x-\frac{x+20}{2}+8+\frac{x-\frac{x+20}{2}+3}{2}=130$
$\therefore z=58$ minutes.
$\frac{68+28}{2}=89$ seconds.
$58-\mathbf{3 9}+8=82$ degrees.
28
$\frac{2}{8}=11$ signs.
Hence the Moon's place =118. . 220 .. 58' .. 39'。
† The mean place of the Moon = 118. .. 220 .. 58^{\prime}. . $39^{\prime \prime}=1270719^{\prime \prime}$
The number of seconds in 18 signs $=1296000$.
$\left.\begin{array}{c}\text { Torrestrial days in a yaLPA }=1577010-150000 \\ \text { Revolutions of Moon }\end{array}\right\} 57753300000 \quad\left\{\begin{array}{c}\text { Theeo dividod by } \\ 1650000 \text { become DRI- } \\ \text { DHA or roducod. }\end{array}\left\{\begin{array}{l}050313 \\ 35008 .\end{array}\right.\right.$
19. The remainder before omitted subtracted from the divisor will give the remainder of seconds : if that remainder of tho seconds is greator than the terrestrial days in a kalpa, then the question is an "impossible one" (incapable of solution and the planet's place cannot be found at any sunrise) : but if less it may be solved. Then from the remainder of the scconds the aflargana may bo found (by the rutfaka pulvorizor ns given in the líhevatí and míja-ganita) Or,
20. That number is the number of ahargana by which the reduced number of revolutions multiplied, diminishod by the remainder of the revolutions and divided by the reduced number of terrestrial days in the ralira, will bear no remainder. 'Ithe reducod number of terrestrial days in a kalis should be added to the aharanina such a number of times as may make the day of the week correspond with the day required by the question.

Now when the mean place of the Moon was sought, the rule was

If any romaindor oxistod, it, when multipliod by the number of soconds in 12 signs and divided by ralpa, terrestrial days gave the Moon's mean place in seconds. We now wish to find the bilagayd -s'reind or the remainder of revolutions, from the Moon's given placo in seconds: we must therefore reverse tho oporation

Moon's place in seconds X xalpa terrestrial days
or \longrightarrow BHAGANA-s'rsia. seconds in 12 signs
The terrestrial days, however, to be used, must to be reduced to the lowess terms to which it, in conjunction with the raLpa-dilaganas or revolutions in a xalipa can bo reduced : the lowost terms as above atated wero of tho terrestrial days $=0.950313$, of tho Mool's кalra-milacanas $=35008$.
$\therefore \frac{1270719 \times 656313}{1296000}=\frac{1215205099047}{1296000}=987658$ quolient - remainder
331047.

987658 quotient
1 adding one
gives 937659 for the bhagand-b'msind.
The reason for adding one is, that we have got a remainder of 831047, which we never could have had, if the original remainder had been exactly 937658, it must have been 1 more. This is therefore added : but the remainder of seconds may now be found-for it will be $12963000-331047=964953$.

I'his romainder 964953 being greater than the terrestrial days reduced to lowest terms, viz. 956313, the question does not admit of being solved.-L. W. .
21. If the Moon's binaana-s'esha or the remaindor after finding the complete revolutions admits of being divided by 1650000, without leaving any remainder, the question may thon be solved : the reduced bhagana-s'esba on being multiplied by 886834 and divided by 951363 , then the remainder will give the arargana. The divisor should be added to this remainder till the day of the week found corresponds with that of the question.*
22. The mean place of the Moon will never be at any sun-riso, equal to 0 signs, 5 dogroos, 36 minutes and 19 seconds.
23. When will the square of the $\triangle D H I M \delta s A-s^{\prime}$ ssha remainder of the additive months, multiplied by 10 and the product increased by one, be a square : or when will the square of the ADHIMÁsA-s'esira decreased by one and the remainder divided by 10 be a square? Tho man who shall toll mo at what poriod of tho kalles this

```
* [To find the aikiranya from the Moon's biacana-sjzbila.
```



```
\(\mathbf{T}=1577916450000\) torreotrial days in a \(\times 1\) LLPA,
\(\mathbf{M}=57753800000\) the Moon's revolutions in a raIPs,
    \(x=\) abaranas.
Then, as \(T: M:: x:\) revolutions \(+\frac{\mathbf{R}}{T}\) or \(y+\frac{\mathbf{R}}{T}\) :
\[
\therefore \quad \mathbf{M} x-\mathbf{T} y=\mathbf{R}:
\]
```

In this equation as M and T are divisible by $1650000, \mathbf{R}$ must be divisible by the same number, otherwise the question will be xilla or "imposeible," as stated in the text.
\therefore Dividing both sidee of the equation by the number 1650000 , we have $35002 x-956318 y=R^{\prime}$ or $M^{\prime} x-T y=R^{\prime}$:
Now let $\mathrm{M}^{\prime} x^{\prime}-\mathrm{T}^{\prime} y^{\prime}=1$: or $85002 x^{\prime}-956313 y^{\prime}=1$: honco wo havo $w^{\prime \prime}=886834$
and $x=\mathrm{R}^{\prime} x^{\prime}-\mathrm{T} t$ (woe the note on the verse 11th)
$=886894 \mathrm{R}^{\prime}-956313 \mathrm{t}$. Hence the rule in the text.
And, as the reduced beacay $\mathrm{s}^{\prime} \mathrm{rsin}=987659$ (see the preceding note) hence $937659 \times 886884=831547881606:$
This dirided by 956313 will give as quotient 869555 (i.e.t) leaving a romainder of 257151 whioh should be the $\operatorname{ABABGANA}$, but as the bHAGAyAs'rema i. e. 937659 does not admit of being divided by 1650000 (tho numbers by which tho terrestrial days woro roduood) it ought to lave boun nithes or insoluble question: but Buisicherousuya here still atated this number to bo the truo chargana,-B. D.]
will tako placo-will be humbly saluted even by tho wiso, who generally speaking, gaze about in utter amazement and confusion at such questions, liko the bee that wanders in the boundless expanse of heaven without place of rest.
24. (In working questions of kutpara pulverizer, the ang-

Remark on the preceding ment must be reduced by the same question. number by which the beíJya dividend and iara divisor aro roduced to their lowest terms, and when the augment is not reducible by the same number as the buíjys and hara, tho question is always insoluble.) But here, in working questions of KUTTAKA, those acquainted with the sulject should know that the given augment is not to be reduced, i. e. it belongs to the reduced bhájya and hara, otherwise in some places the desired answer will not be obtained, or in others the question will be impossible.*

- [The questions in the 23rd verse are the questions of the varga-prakriti or the aifected equare, i. e. questions of indeterminate problems of the second degree. 1st quention. Lot $a=$ the ADUIMÁsa-s'ssira : then by question $10 x^{2}+1=y^{2}$.

In such questions tho coefliciont of x is caller prakritt, tho value of asamisurita, lhint of the nugment ksicepa and that of y Jyesintila.

Now assume $y=m x+1$,

$$
\begin{aligned}
& \text { then } 10 x^{2}+1=(m x+1)^{2} \\
&=m^{2} x^{2}+2 \\
& \therefore \quad x=\frac{2 m}{10-m^{2}} \\
& \therefore \quad
\end{aligned}
$$

Hence the rule given by buísxaríobarya in his algebra Ol. VI., verse VI., for finding the ranibrtua where the Ishepa is 1, is "Multiply any ansumed number by 2 and divide by the difference botween the square of the number and tho praxurti, tho quotiout will be the ranisnfica whore tho xsurpa in 1.0

From two eete, whethor identical or otherwise, of xaxisutina, jymitipa and remera belonging to the same praxprit, all others can be derived nuch as follows.

Lot $a=$ rraximit, nud

wo havo

$$
\begin{aligned}
& a x_{y}^{2}+b_{1}=y_{1}^{2} ; \\
& a x_{\underline{2}}^{2}+b_{2}=y_{2}^{2} ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { Now assume } m=3 \text {, thon } x=\frac{2 m}{10-m^{2}}=\frac{2 \times 3}{10-9}=6 \text { : } \\
& \text { and } \therefore y=\sqrt{10 x^{2}+1}=\sqrt{861}=10:
\end{aligned}
$$

25. Tell me, \mathbf{O} you competent in the spheric, considering it frequently in your mind for awhile, what is the latitude of the city (A)
Queation. which is situated at a distance of 90° from uJJayinf, and bears

$$
\begin{aligned}
& \therefore \quad a x_{1}^{2} y_{y}^{2}+a x_{2}^{2} y_{1}^{2}+b_{1} b_{3}=y_{1}^{2} y_{z}^{\frac{2}{z}}+a^{2} x_{1}^{2} x_{2}^{2}: \\
& \text { adding } \pm^{2}{ }_{a} x_{1} x_{1} x_{8} y_{1} y_{g} \text { to both sides }
\end{aligned}
$$

or $\quad a\left(x_{1} y_{\mathrm{g}} \pm x_{\mathrm{g}} y_{\mathrm{i}}\right)^{2}+b_{\mathrm{A}} b_{\mathrm{g}}=\left(y_{1} y_{\mathrm{g}} \pm a x_{1} x_{\mathrm{g}}\right)^{2}$:
thus we get a now set of XANETHA, JYRSGTHA and Kburpa :
i. e. new ranibutua $=x_{1} y_{2} \pm x_{2} y_{2}$;

HOW JYRSIITIIA $=y_{1} y_{y} \pm a x_{1} x_{y}$;
and new sвhrya $=b_{1} b_{y}$:
Honice the Rule called buavaní given by beibearáciabya in his algebra Ch VI. varses III. \& IV.
Now in the present question

$$
\begin{array}{ll}
\\
\text { and aloo } & x_{2} \equiv 6_{2}, y_{1}=19 \text { and } b_{1}=1, \\
x_{2}=6, y_{2}=19 \text { and } b_{y}=1 ;
\end{array}
$$

and now квukpa $=1 \times 1=1$.
Thuse $x=8658$ do., nocording to tho Blaívamí uasumul.
The ecoond quustion is

$$
\begin{gathered}
\frac{x^{2}-1}{10}=y^{2}, \\
\text { or } \quad x^{2}=10 y^{2}+1 .
\end{gathered}
$$

Here then we have an equation similar to the former one, but x^{2} is now be in the pluce of y^{2} and y^{2} in the place of x^{2}.

$$
\begin{aligned}
\therefore \quad x \text { will be } & =19 \\
& =721 \text { sc. }
\end{aligned}
$$

Now given $\triangle D u i$ asa-brsina as found by the first case $=6$. The proportion by which this remainder was got, was
if EALPA BAUkA daje : EALPA-ADHIKABAS: : or elapsed satura daye
6
$: y+\overline{\text { maLpa satua days }}$.
\therefore KALPA-ADHIEABAE $X=$ KALPA BAURA da
or $\quad y=\frac{\text { KALPA-ADHIMABAB } \times x-6}{\text { HALPA BAUKA days }}$.
From this we got a now question: "What are the intrgor valuns of x nnd y in thes equation ${ }^{\prime \prime \prime}$ whioh question is ono of the questions of roupaka and in which the coellicient of the unknown quantity in the numerator is oullod BHAJYA or dividend, the denominator EARA or divisor and the sugment KBHEPA.
It is olear that in this equation, if thie augment be not divisible by the same number as the dividend and divisor, the ralues of x and y will not be integers, and hence the question will be insoluble. But here in order that no question should be iusoluble, the author lias atated that the dividend and divisor should aliways bo tuken, reduced to their lowest terms, otherwise the question will be insuluble.
as in the present queation, if the dividend xatpa-adimasas and the divisor ralea saula duys be luken not reduoed to their lowest terme, i. o. not divided by
due cust from that city (ujJayini) ? What is the latitudo of the place (B) distant also 90° from the city (A) and bearing due west from it? What also is the latitude of a place (C) also 90° from (B) and bearing N. E. from (B) : and of the place (D) which is situated at a distance of 90° from (C) and bears S. W. from (C) ?*
tho number 300000, the question will bo an impossiblo ono, hecause tho nugment 6 is not divisible by the same number. For this reason the dividend and divisor must be taken here reduced to their lowest terms.
Hence, dividend $=$ reduced malpa-adnizasas $=\frac{1593300000}{800000}=5311$; and divisor $=$ reducod katipa satra daje $=\frac{1555200000000}{300000}=5181000$.
\therefore By substitution, $y=\frac{5311}{5184000}$,
which gives $x=826746$ the elapsed saura days
or 2276 jears 6 months and 6 duys.-B. D.]

- Let $a=$ the azimuili degrees,
$d=$ the distance in degrees between the two citios,
$p=$ patabнa' at the given city,
$k=$ arsha-marna,
nud $x=$ the lalitude of the other eity.
Thon $\sin x=\left(\frac{\sin d \times \cos a}{\text { Rnd }} \pm \frac{\cos d \times p}{12}\right) \times \frac{12}{k}$.
Now in the lst quertion, $a=90^{\circ}, d=90^{\circ}, p=E$ digits, the palauna' at UJJAYINI, and $k=\sqrt{12^{2}+3^{2}}=13:$

$$
\begin{aligned}
& \therefore \quad \sin x=\left(\frac{3438 \times 0}{3438} \pm \frac{0 \times 5}{12}\right) \times \frac{12}{13} ; \\
& =(0 \pm 0) \times{ }^{12}=0 \text { : } \\
& \therefore x=0=\text { lutitude of (} 1 \text {) or of Tam.axort. }
\end{aligned}
$$

(2). In the second question, $a=90^{\circ}, d=90^{\circ}, p=0$ digits at yayazoti, and $\therefore k=12$:

$$
\begin{aligned}
& \therefore \text { sin } \equiv\left(\frac{3438 \times 0}{3438} \pm \frac{0 \times 0}{12}-\right) \times \frac{12}{12} ; \\
& \therefore \quad x=0 \text { Latitude of city }(B) \text { or Lanra. }
\end{aligned}
$$

(3). In the 3 rd question, $a=45^{\circ}, d=90^{\circ}, p=0$ at lanká and $k=12$:

$$
\begin{aligned}
\therefore \quad \sin x & =\left(\frac{3438 \times 2431}{8438}+\frac{0 \times 0}{12}\right) \times \frac{12}{12} ; \\
& =(2431+0) \times 1=2431: \\
& \quad \text { T } 2
\end{aligned}
$$

26 and 27. Convert the distance of yojanas (between the
Rtis. two cities, one is given and the other is that of which the latitude is to be found, into degroes (of a large circle), and then multiply the sine and cosine of these degroes by the cosine of tho aximuth of tho other city and palabif at the given city, and divide the products by radius and 12 respectively. Take then the difference between these two quotients, if the other city be south of east of the given city ; and if it be north of that, the sum of the quotients is to be taken. But tho reverso of this takes place, if the distance between the cities be more than a quarter of the earth's circumference. The difference or sum of the quotients multiplied by 12 and divided by akshakarna will give the sine of the latitude sought.*

$$
\therefore x=45^{\circ} \text { Latitude of oity (0). }
$$

(4). In the 4th queation, $a=45^{\circ}, d=90^{\circ}, p=12$ at C and $\therefore k=$ $12 \cdot \sqrt{2}$

$$
\begin{aligned}
\therefore \sin x & =\left(\frac{3438 \times \frac{4 n 8}{8}}{8438} \sqrt{2} \sim \frac{0 \times 12}{12}\right) \times \frac{12}{12 \sqrt{2}} ; \\
& =\left(\frac{3438}{2} \sqrt{2} \sim 0\right) \times \frac{1}{\sqrt{2}}=\frac{8438}{2}
\end{aligned}
$$

$\therefore x=30^{\circ}$ Latitude of D.-L.W.

* [Let Z be the Zenith of the given city bearing n north latitude, Z II N G the Meridian, G A II tho Iforizon, \mathbf{P} the north pole, 8 the Zenith of the other city, the Intitude of which is to be found and $Z \mathrm{~S}$ N the azimuth circle passing through 8 . Then the are Z S (which is equal to the distance in degrees between the two cities) will a be the Zenith distance of 8 ; the aro II G, the are contuining the given mzimuth degrees, and 8 A which is equal to the declination of the point S, the latitude of the other city which can be found as follows.
Let $a=I I g$ the given aximuth degrees,

$d=$ Z S the diatnuce in degrees between the two cities,
$p=$ ралавіа,
$\boldsymbol{k}=\mathrm{arsha}$-Kakns

28. 'Toll mo quickly, O Astronomer, what is tho latitude of a place (A) which is distant $\frac{1}{6}$ of the earth's circumforonce from the city of dhirk and bears 90° due east from it? What also is the latitude of a place distant 60° from DHKRK, but bearing $45^{\circ} \mathrm{N}$. E. from it? What also is the latitude of a place distant 60° from dHárí and bears S. E. from it? What also are the latitudes of throc places 120° from $\operatorname{DIK} K_{R X}$ and boaring respectively due east, N. E., and S. E. from it ?*
and $x=8 k$ the declination of the point 8 i. e. the latitude of the other city.
Then say, As sine $Z g$: sine $A g$: : sine $Z \mathbf{S}$: the beusa i. a. the sine of distance from 8 to the Prime Vortical.
or

$$
\mathbf{R}: \cos a:: \sin d: \text { nIMOSA }
$$

And by similar latitudinal tringles, $12: p: 008 d: s^{\prime}$ Anmotala,

$$
\therefore \text { s'AnItTALA }_{\prime}=\frac{p \times \cos d}{12}
$$

Now when the other city is north of east of the given city, it is evident that the berja will be uorth and consequently
the sine of ampliturle $=$ binda $+\mathrm{s}^{\circ}$ ankutaia :
but, whon the othor city is south, the mors also will be south and then, the sine of amplitude $=$ bhuja \sim s'aneutala,
or the sine of amplitude $=\frac{\cos a \times \sin d}{R} \pm \frac{p \cos d}{12}$.
And by latitudinal triangles
$k: 12: 8$ sine of amplitude : sine of deolination is e_{0} sin a

$\therefore \sin x=\frac{12 \times \operatorname{sine} \text { of amplitude }}{k}=-\quad$,
hence the rule in the text.
If the distance in degrees between the two cities be more than 90°, the point 8 will then lie bolow the Horizon, and consequently the direation of the bHoJa will be changed. Iherefore the reverse of the sigus t will take place in that case.-B D.]

- Here also $\sin x=\left(\frac{\sin d \times \cos a}{12} \pm \frac{\cos d \times p}{12}\right) \times \frac{12}{k}$.
(1.) In the first quostion, $a=90^{\circ}, d=60^{\circ}, p=\sigma$ digits tho palabira of DItaka and $\therefore k=13$.

$$
\begin{aligned}
\therefore \sin x & =\left(\frac{2977 \times 01719 \times 5}{3438}+\frac{12}{12}\right) \times \frac{12}{13} \\
& =\frac{1710 \times 5}{12} \times \frac{12}{13}=\frac{8595}{13}=663 \frac{9}{13}
\end{aligned}
$$

29. Tell me, my friend, quickly, without being angry with me, if you have a thorough knowledge of the spheric, what will be the palabhá of the city where the Sun being in the middle of the ardra nakshatra (i. e. having the longitude 2 signs $13^{\circ} 20^{\prime}$) rises in the north-east point.*
$\therefore \omega=11^{\circ} . .15^{\prime} . .1^{\prime \prime}$ Latitude of oity due east from danea.
(2). In the 2nd equation, $a=45^{\circ}, d=60^{\circ}, p=5 \& \cdot k=13$:

$\therefore x=49^{\circ} .18^{\prime} . .24^{\prime \prime}$ Latitude of city bearing $45^{\circ} \mathrm{N}$. F. from DEABA.
(3). In the 3 rd question, $a=45^{\circ}, d=60^{\circ}, p=5$ and $k=13$.

$$
\begin{aligned}
\therefore \operatorname{ain} \otimes & =\left(\frac{2977 \times 2431}{8438} \sim \frac{1719 \times 5}{18}\right) \times \frac{12}{18} ; \\
& =\frac{9549239}{7449}=1281 \frac{7070}{7449} .
\end{aligned}
$$

$\therefore z=21 \cdot .54^{\prime}$. $84^{\prime \prime}$ Latitude of city bearing the S. E. from dirara.
(4). To find latitude of place 120° from dhard and due east. Here, sin $d=\sin 120^{\circ}=\sin 66^{\circ}=2977$, $008 d=\cos 120^{\circ}=-\sin 30^{\circ}=-1719$ $\cos a=0, p=5$ and $k 13$:

$$
\begin{aligned}
& \therefore \sin x=\left(\frac{2977 \times 0}{9438} \pm \frac{1719 \times 5}{12}\right) \times \frac{12}{13} ; \\
& \\
& =662 \frac{9}{18}:
\end{aligned}
$$

The latitudes of the places 120° bearing N. If. \& S. E., will be the same as the latitudes of those places distant 60° and bearing 8. E \& N. E. Hence the latitudes are $21^{\circ} \quad 54^{\prime} . .34^{\prime \prime}$ and $49^{\circ} \quad 18^{\prime} \quad 24^{\prime \prime}$-L. W.

- Ansr. Sun's amplitude $=$ sine of $45^{\circ}=2431^{\circ}$,
the sine of longitude of middle of ARDea $=$ sine of 2 signs $18^{\circ} \quad 20^{\prime}=\sin 73^{\circ}$ $20^{\prime}=3292^{\prime} . .6^{\prime \prime} \quad 40^{\prime \prime \prime}$
and the sine of the Sun's greateat declination $=\sin 24^{\circ}=1397^{\circ}$.
'Ihen say: As Rad : sin $24^{\circ}:: \sin \left(73^{\circ} 20^{\prime}\right)$: sine of declinution, and ns sine of amplitude : sine of declination : : Kad : 00s of latitude,
\therefore sine of amplitude : sin $24^{\circ}:: \sin \left(73^{\circ} 20^{\prime}\right): 008$ of latitude.
\therefore oos of latitude $=\frac{\sin 24^{\circ} \times \sin \left(73 \bullet . .20^{\prime}\right)}{\operatorname{sine} \text { of amplitude }}=\frac{1897^{\prime} \times\left(3292^{\prime} . .6^{\prime \prime} .40^{\prime \prime}\right)}{2431^{\prime}}$
$=1891^{\prime} 60^{\prime} 48^{\prime \prime}=$ sine of $33^{\circ} 23^{\prime} 87^{\prime \prime}$:
whence latitudo will be $56^{\circ} \mathbf{3 6 ^ { \prime }} \mathbf{2 3 ^ { \prime }} \therefore$ gine of latitude $=2870^{\circ} 13^{\prime \prime}$.
'Ithen say : As cos of latitude : nino of latitudo : : Gnomon : oqumoctial shadow 1891'.. $51^{\prime \prime}$: $2870^{\circ} 13^{\prime \prime}:: 12$
\therefore cquinoclial shadow $=\frac{12 \times\left(2870^{\prime} . .13^{\prime \prime}\right)}{1891^{\prime}} \frac{51^{\prime \prime}}{18} \frac{13}{60}$ digits.-I. W.

30. 'Jell mo the soveral latitudes in which the Sun remains above the horizon for one, two, three, four, five and six months before he
sets again.*
31. If you, O intelligent, are acquainted with the resolution of affected quadratic equations, then find the Sun's longitude, observing that the sum of the cosine of doclination, the sino of doclination, and the sine of the Sun's longitude: equal to 5000 is (the radius is assumed equal to 3438.)
32. Multiply the sum of the cosine of declination, the sine of declination, and the sine of Sun's longitude by 4, and divide the product by 15 , the quotient found will be what has been denominated the KDya. Next square the sum and double the square and divide by 337, the quotient is to be substracted from 910678. Take the square-root of the remainder. That root must then be subtracted from the ADYA above found : the remainder will bo the declination, when tho radius is equal to 3438 . From the declination the Sun's longitude may be found. \dagger

* Ansr. When the Sun has northorn declination he remains above tho horizon for one month in $67^{\circ} \mathrm{N} . \mathrm{L}_{\text {. }}$
two montios in $\mathbf{0 y}^{\circ}$
three months 73° four months 78° five months 84° six monthe 90°
These nre roughly wrought: for Biaskaricuarya's rule for finding these Jntilindes ece the triphas'nadipayas of the goladuyaya and aleo the ganita-juvava.-I. W.
\dagger [Let $a=$ the given sum,
$p=$ the sine of lie Sun's oxtreme declination
$x=$ the sine of the Sun's declination.
Then the cosine of declination will be $\sqrt{\mathbb{R}^{2}-s^{2}}$ and the sine of the Sun's lougitude $=\frac{\mathbf{R} \boldsymbol{x}}{\boldsymbol{p}}$:
\therefore by question $\sqrt{B^{2}-x^{2}}+x+\frac{R x}{p}=a$:
or $\quad p \sqrt{\mathrm{R}^{2}-x^{2}}+(\mathrm{R}+p) x=a p$,
and $\quad p \sqrt{R^{2}-x^{2}}=a p-(\mathrm{K}+\mathrm{p}) x$;
$\therefore \mathrm{R}^{2} p^{2}-p^{2} x^{2}=a^{2} p^{2}-2 a p(\mathrm{R}+p) x+\left(\mathrm{R}^{2}+2 \mathrm{R} p+p^{2}\right) x^{2} ;$
$\therefore\left(\mathrm{R}^{2}+2 \mathrm{R} p+2 p^{2}\right) x^{2}-2 a p(\mathrm{R}+p) x=-\left(a^{2}-\mathrm{K}^{2}\right) p^{2} ;$

33. Given the sum of the sines of the declination and of tho altitude of the Sun when in the prime vertical ; the tadmiritit, tho kujyá and sine of amplitude equal to 9500 , at a place where the palabiá

$$
\text { or } \quad x^{2}-\frac{2 a p(R+p)}{R^{2}+2 R p+2 p^{2}}=-\frac{\left(a^{2}-R^{2}\right) p^{2}}{\mathbf{R}^{2}+2 R p+2 p^{2}}
$$

$$
=\frac{a^{2} p^{2}(\mathrm{R}+p)^{2}}{\left(\mathrm{R}^{2}+2 \mathrm{R} p+2 p^{2}\right)^{2}}-\frac{\left(a^{2}-\mathrm{R}^{2}\right) p^{2}}{\mathrm{R}^{2}+2 \mathrm{R} p+2 p^{2}} ;
$$

$$
=\frac{\mathrm{K}^{4} p^{4}+2 \mathrm{R}^{3} p^{2}+2 \mathrm{R}^{2} p^{4}-a^{2} p^{4}}{\left(\mathrm{R}^{2}+2 \mathrm{R} p+2 p^{2}\right)^{2}} \mathrm{R}^{2} p^{2} a^{2} p^{4}
$$

$\therefore x-\frac{a p(\mathrm{R}+p)}{\mathbf{R}^{2}+2 \mathrm{R} p+2 p^{2}}= \pm \sqrt{\frac{\mathbf{R}^{2}+2 \mathrm{Rp}+2 p^{2}}{\mathrm{R}^{2} p^{2}} \frac{\left(\mathrm{R}^{2}+2 \mathrm{R} p+2 p^{2}\right)^{2}}{\mathrm{a}^{2} p^{2}}}$,
or $x=\frac{a p(R+p)}{R^{2}+2 R p+2 p^{2}} \pm \sqrt{R^{2}+2 R p+2 p^{2}}-\frac{R^{2} \boldsymbol{p}^{2}}{\left(R^{2}+2 R p+2 p^{2}\right)^{2}}$.
Now here $\mathrm{K}=3438$ and $p=1397$,
$\therefore \frac{a p(\mathrm{R}+p)}{\mathrm{R}^{2}+2 \mathrm{R} p+2 p^{2}}=\frac{a p(\mathrm{R}+p)}{(\mathrm{R}+p)^{2}+p^{2}}=\frac{a \times 1397 \times 4835}{(4835)^{2}+(1397)^{2}}=\frac{6734495 a}{25328834}=$
4

- a nearly = ÁdYA;

15
and $\overline{R^{2}+2 R p+2 p^{2}}=\frac{-}{25328834}=910729$, in place of this the Au-
thor has taken the number 910678.
$\therefore x=$ ídYA $\pm \sqrt{910678}-\frac{\theta^{2} a^{2}}{}:$
but of these, the positive value is excluded by the nature of the case, because the sine of declination is alwass less thau 1397.

Hence the Rule in the text.
Solution. The given sum $=5000$,

$$
\therefore \text { ÁDYA }=\frac{5000 \times 4}{15}=1333^{\prime} 20^{\prime \prime} \text { and } \frac{8}{3}{ }^{\circ} a^{2}=148367^{\prime} 57^{\prime \prime} 9 .{ }^{\prime \prime \prime}
$$

\therefore sine of declinution $=1333^{\prime} 20^{\prime \prime}-\sqrt{910678-148367^{\prime}} 57^{\prime} \mathbf{9}^{\prime \prime \prime}$

$$
=1333^{\prime} 20^{\prime \prime}-873^{\prime} 6^{\prime} 13^{\prime \prime \prime}
$$

$$
=460^{\prime} 13^{\prime \prime} 47^{\prime \prime} \text { : from which we linve tho longitudo of }
$$

he Sun $=0^{\circ} . .10^{\circ} \ldots 14^{\prime} 36^{\prime \prime}$ or $5^{\prime \prime} 10^{\circ} . .45^{\prime \prime} 24^{\prime \prime}$ or $6^{*} 1 j^{\circ} 14^{\prime} .36^{\prime \prime}$ or 114.. 10 0°. 45^{\prime}.. 24 $4^{\prime \prime}$. 13 . J).]
or equinoctial shadow is 5 digits, tell me then, my clever friend, if quick in working questions of latitudinal triangles and capable of abstracting your attention, what are the separate amounts of each quantity?
34. First assume the sine of declination to be equal to

Rule. 12 times the shadow palabek: and then find the amounts of the remaining quantities upon this supposition. Then those on tho supposition inado, multiplied severally by the given sum and divided loy their sum on tho supposition made, will respectively make manifest the actual amounts of those quantities the sum of which is given.*
35. If you have a knowledge of mathematical questions involving the doctrine of the sphere, tell me what will be the several amounts
of sines of amplitude, declination and the kuJYE (where the palabHé is 5 digits) when their sum is $2000 . \dagger$

- Anlution. IIcro patanmía = 5 digita
\therefore Sирромо the sino of deolination $=5 \times 12=\mathbf{0 0}$:

$5: 13:: 00:$ sama $8^{\prime} \triangle \operatorname{lig}=\frac{13 \times 60}{5}=156$,
Gnomon : Argiafigna : : sam s'anid : taddibiti $=\frac{156 \times 13}{12}=160$, - 12 : falaibia' : : sine of decln. : mojya $=\frac{60 \times 5}{12}=25$,
and 12 : AKsilakausa : : sine of decln. : sino of amplitude $=\frac{60 \times 13}{12}=60$.
\therefore If the sum : sine of decln. supposed : : given sum : sine of docln. required.

or 475 : 60	: : 9500	: 1200.
If 475 : 156	: : 9500	: 8120 sAMA $\mathbf{s}^{\prime} \triangle N \mathrm{NEV}$ requirod.
and so on		3380 tadditmity
		500 KUJYa
		1300 eine of amplitude.

\dagger Solution. IIoro also palamita $=\mathbf{5}$, then suppose sinco of ileclination ue before $=\mathbf{6 0}$, and sine of anplitude $\quad=65$, KUJYA \quad the sum $=25$,
36. But dropping for a moment those questions of tho Questions. siddhíntas involving a knowledgo of the doctrine of the sphere, tell mo, my learned friend, why in finding the point of the ecliptic rising above the horizon at any given time, (that is tho ranina or horoscope of that time,) you first calculate the Sun's apparent or true place for that time, i. e. the Sun's instantaneous place : and further tell me, when the Sun's savana day, i. e. terrostria] day, consists of 60 sidereal ghatikís and 10 palas, the lagna calculated for a whole terrestrial day should bo in advance of the Sun's instantaneous place, and the lagna calculated for the time equal to the terrestrial day minus 10 palas should be equal to the Sun's instantaneous place.
37. Are the ahaficís used in finding the lagna, ghatisís of sidereal or common sápana time? If they are sávana ahapicás, then tell me why are the hours taken by the several signs of tho ocliptio in rising, i. o. tho res'yumaya which aro sidereal, subtracted from them, being of a different denomination? If on the other hand you say thay are sidereal, then I ask why, in calculating the ragna for a period equal to a whole sápana day i. e. 60 sidereal ohamizas and 10 palas, the lagna does not correspond with, but is somewhat in advanco of, the Sun's instantaneous place; and then why the Sun's instantaneous place is used in finding tho laana or horoscopo.*
38. Given the length of the shadow of gnomon at 10 astis

Queation. after sun-rise equal to 9 digits at a place where the palabhá in 5 digits: tell me what is the longitude of the Sun, if you are au fait in solving questions involving a knowledge of tho sphere. \dagger

[^58]39. 'Ioll mo, 0 Astronomor, what is tho palabili at that place where the gnomon's slaadow falling due west is equal to the gnomon's

Iet BODIf be meridian of the given place, OAE the diameter of the Horizon, B the Zenith, P and Q tne north and south poles, B A D the diameter of the Prime Vertical, F A G that of the Equinootial, P A Q that of the six o'dock line, H $f \mathrm{~L}$ that of one of the diurnal oircles, s the Sun's projected place in it and $f k, z m$, II n perpendiculars to $\mathbf{O E}$. Then

IB F or $\mathrm{E} P=$ the latitude of the place,
$A f=$ tho sine of the Sun's declination,
$\Lambda g=\Delta a r a$ or the siue of amplitude,
$f g=$ rojai A^{\prime}. (It is called obarajpi ${ }^{\prime}$ or sine of the ascensional difference when reduced to the radius of a great circole.)
$f:=$ rala'. (It is called butra when reduced to the radius of a great circle.)
$s g=$ ishfa heiti. (It is called tadderiti whon s is at e, Heriti when s is at I and rujys when s is at f.)
The ismpa iriti roduced to the radius of a great circle is called ibita antya', but s coinuides with II, it is cnllod \triangle NTYA' only.

It is ovident from the ligure abovo described that

(2) isita antyá $=$ bútra \pm cmarajya',
(3) HeITI = DYOJYA' or cosino of declination \pm moJXa',
(1) antya $^{\prime}=$ radius \pm onarajua'

IIoro tho positive or negative sign is to be taken according as the San is in the northern or southern hemisphere.
height when the Sun is in the middle of the sign Leo, i. e. when his longitude is 4 signs and 15 degrees.*

Now at a given hour of the day, the rbifta Hepiti and others can be found as follows.

Half the length of the day diminished by the time from noon (or the nata ka'la properly so cullod) is tho onnata xala (or olevated time). Subtract from or add to tho dnNata Ka'la the asconsional diffurence according as the Sun is in the northern or southern hemispliere : reduce the remainder to degrees: the sine of the degroes is sútra. The súpra multiplied by the cosine of declination and divided by the radius gives the kala'. Then from the above formulow wo can easily find the isufa heiti and others.

Now to find the answer to the present question.
Square the length of the Gnomonic shadow and add it to the squaro of the Gnoinon or 144: and square-root of the sum is callod the hypothenuso of tho shadow. From this hypothonuso find tho MAMa's'anke or hio sine of tho Suit's altitude by the following proportion.

As the hypothenuse of the shadow
: Gnomon or 12
:: Radius
: The MABAB'AMIU or the sine of the Sun's altitude.
Then by similar latitudinal triangles,
as the Gnomon of 12 digits
: AKBMA Karna found from given palabita'
:: MABAB'ANEU
: isupa hriti (800 verses from 45 to 40 of the 7th Chapter).
Reduce tho givon unnata Ka'la to dagroos mind nesumo tho sino of tho degroos as ishfantya (for thin will always be vory near to tho 1sifa'ntya). Thon
cosine of doclination $=$ 1sHTA haITI
Radius ishta'ntya
From this the cosine of declination will nearly be found, and thence the decination and ascensional difference can also be found. From the ascensional difference, just found, find the I8uTa'stya' of two kinds, one when the 8 lin is supposed to be in the northern hemisphere and the other when the Bun is supposed to be in the southern hemiaphere. Of these two Isapantya's that is nearly true which is nearer to the rough 18ETa'ntya' first assunied (i. e. the sine of the derata xa'la). From this new ishfa'mtya' find again the declination and repest the process until the roughness of declination vanishes. Front the doclinution, last found, the longitude of the Sun can bo found.-B. D.]

- The hypothenuse of the ahadow ia first to be found. Then say

As hypothenuse of the shadow
: Gnomon
: : Rad
: the MAIIA' $\mathrm{s}^{\prime} \triangle \mathrm{NEX}$ or the sine of the Sun's altitude.
Here we shall find sine of 45°. This is the bama $8^{\prime} A n E T$.
It is 2431' aigus
Sine of deolination of the Sun when in $4 . .15^{\circ}=987^{\prime} \quad 48^{\prime \prime}$
$\left.\left.\therefore \overline{2431^{\prime}}\right)^{2}-987^{\prime} \ldots 48^{\prime \prime}\right)^{2}=(\text { TADDHRITI - KUJYı })^{2}$
or $5909761-975749$.. $9=4934011 \quad 61$.
\therefore TADDERIMI - YUJYA $=\sqrt{4934011 . .61}=2221^{\prime} . .15^{\prime \prime}$
Here we have 8 sidee of the latitudinal triangle consisting sama $\mathbf{g}^{\prime} \triangle \mathbf{A Y O}$, declination and taddhriti - rojys'. Hence we may find the latitude.

Then by similar latitudinal triangles
As TadDHRITI - EDJYa' 2221^{\prime}.. 15°
: sine of deolination 987^{\prime}.. $48^{\prime \prime}$
: : Gnomon 18
: PALABHA' $5 \frac{1}{2}$ digits.-I. W.
40. When tho Sun enters the prime vertical of a person at ujuayinf either at 5 ahatis after sun-riso or 5 alunts bofore or after midday, what are his declinations? If you will answer me this I will hold you to be the sharp ankUs'A (goad) for the guidance of the intoxicated elephants, the proud astronomers.*

From ON, to find OB the sine of declination say
palabia' \times O N
 clination.

From O B we mny now find the longitude of the San and OD the ascensional difference: Now deduct this nscensional difference from the sine of olevatod timo convortod into degroes. ILenco

$$
0 D-O D=C O \text {. }
$$

Now reduce $\mathbf{O O}$ to terms of a small circle on the supposition that the Sun has the deeliuntion now fuund.

As Rnel: OO: : cosino of declination: N \mathbf{B}.
Now find also B A by the same proportion.
Then $\mathrm{NB}+\mathrm{BA}=\mathrm{N} \mathrm{H}^{\prime}$ a new value of taddiriti.
If $\mathrm{HIN}_{\mathrm{N}}$: gave $\mathbf{O} \mathrm{B}:$: $\mathbf{H} \mathrm{N}^{\prime}: \mathrm{OB}^{\prime}$ corrected value of $\mathbf{O} \mathbf{B}$.
Hence a corrected longitude of the Sun.
Tho operation to be repeated till rightness is found.
2ull.-To find the declination from the mata ya'ma or time from noon = $\sin 30^{\circ}$.

Jait $a=$ tho aing of mata ka'la: $\mathbf{R}^{2}-a^{2}=$ sfíthay,
and $x=$ the sine of declination : $\mathbf{R}^{2}-x^{2}=\cos ^{2}$ of declination.
The stitan reduced to value of diurnal circle will give xala'
Tho proportion is. As \mathbf{R} : sútra : : cos of declination : ralaj,
but I do not know what cos of declination is but only its square.
I must therefore make this proportion in squares
As $R^{2}:$ BíSRA $: ~: \cos ^{2}$ of declination : $\left.\overline{\text { KALA }}\right):=\frac{\left(R^{2}-a^{2}\right)\left(R^{2}-x^{2}\right)}{1^{2}}$
Now by similar latitudinal triangles
$\left.A s \overline{12})^{2}: \overline{\text { PALADLA }}\right)^{2}:(\overline{\text { RA }, \lambda})^{2}:$ sine 2 of declination
\therefore sine 2 of declination $\left.=\frac{\overline{\text { PALABHA }})^{12}}{\overline{12})^{2}} \times \overline{\mathrm{KALA}}\right)^{2}=\frac{25}{144} \times \frac{\left(\mathrm{R}^{2}-a^{2}\right)\left(\mathrm{R}^{2}-x^{2}\right)}{\mathrm{K}^{2}}$

$$
=x^{2}
$$

41. In a place of which tho latitude is anknown and on a day which is unknown, the Sun was observed, on entering the primo vortical, to give a shadow of 16 digits from a gnomon (12 digits long) at 8 ghapikís after sun-rise. If you will tell mo tho declination of the Sun, and the palabei I will hold you to be expert without an equal in the great expanse of the questions on directions space and time.*
42. O Astronomer, tell me, if you have a thorough knowledge of the latitudinal fignres, the palabiá and the longitude of the Sun
```
    Now \(R^{2}-a^{2}=8864883\)
        \(25\left(R^{2}-a^{2}\right)=25 \times 8864883=221622075\)
and \(144 \mathrm{R}^{2}=144(3438)^{2}=1702057596\)
    \(\therefore \frac{221622075\left(\mathrm{R}^{2}-x^{2}\right)}{1702057530}=x^{2}\)
        1702057586
    \(\mathrm{R}^{2}-\boldsymbol{x}^{2}=\frac{1702007686}{221622075} \boldsymbol{x}^{2}=7 \frac{1}{3} 2^{2}\) uearly
    \(\therefore 26 x^{2}=3 \mathrm{R}^{2}: x^{2}=\frac{8 \mathrm{R}^{2}}{26}=1303828\)
and \(x=\sqrt{1363828}=1167^{\prime}=\operatorname{sino}\) of \(10^{\circ} . .51^{\prime}\)
    Hence the Sun's place may be found.-L. W.
    - To find the sine of altitude or MAIIA' \(\mathrm{B}^{\prime} A \mathrm{AKT}\)
    \((16)^{2}+(12)^{2}=(20)^{2}\)... liypothenuse of the shadow \(=20\).
Then say
```



```
    Now suppose the sine of UMHATA Ha'm or 8 GHATIKA's to be the TADDHpITI
\(=2655\).
    Then by similar triangles
    \(2062^{\prime}\).. \(48^{\prime \prime}: 2655^{\prime}:: 12:\) AKBEA KAENA \(=\frac{2055^{\prime} \times 12}{20624}\)
    From this find the palabia'.
    To find declination eays
    Ab aybia karna : palabia': : 2062' .. 48' \(:\) sine of declination.
    From this find the cosine of declination, the KUJYA, the ascensional difference,
fo. The thinata mala diminighod by the asconsional differonce givee the time
from 6 o'clock : the sino of this timo will be the sorrra and lienco the kaida
thence (kUJYa' boing addod) tho radolthiti : and thonce the aksita Earna and
doclination. Tho operation to be ropeuted till the crror of tho original assump-
tion vaniahes.-I. W.
```

at that place, where (at a certain time) the xojys is equal to 245 and the taddipiti is equal to 3125.*
43. Given the sum of the $\mathbf{3}$ following quantities, viz. of the sines of declination, and of the altitude of the Sun (when in the prime vertical) and of the tadderiti decreased by the amount of the кujxא equal to 6720, and given also the sum of the sujxא, tho sinos of amplitude and doclination (at the same time) equal to 1960 . I will hold him, who can tell me the longitude of the Sun and also palabid from the given sums, to be a bright instructor of astronomers, enlightening them as the Sun makes the buds of the lotus to expand by his genial heat. \dagger

- Aner. Let $x=$ the palabila
then say. As $m: 12:$: 245 : aine of deolination $=\frac{2940}{m}$.
Now find the raddeqitil miner murai.
As $x: 12:$: $\frac{2940}{x}:$ TADDEBITI - YOJYA $=-\frac{85280}{x^{2}}$.
But taddiriti - yojya $=3125-215=2880$.
$\therefore 2880=\frac{35280}{x^{2}}$ and $\boldsymbol{n}^{2}=\frac{35280}{2880}=\frac{40}{4}$

$$
\left.\therefore x=\frac{1}{4}=3\right\} \text { PALADHA. }
$$

To find declination say
As 3t: $12:: 245: 840$ sine of declination.
Hence the longitude of the Sun may be discorered as before-L. W.
\dagger This question admits of a ready solution in consequence of its peculiaritica
The sine of declination

$$
\left.\begin{array}{l}
\text { BAYA S'ANEU } \\
\text { I I- KUJYA }
\end{array}\right\}=6720
$$

and tadditniti - KUJYa
aro all throo roeprectivoly perpondiculars in the threo latitudinal trianglose
And the rujra
the sine of amplitude $\}=1960$
and the TADDHRITI - KOJYA
are bases in the same $\mathbf{8}$ triangles.
Hence we may take the sum of the 8 perpendiculars and also the sum of the three bases and use them to find the pazabia.
As the sum of the sum of the 3 bases
3 perpondiculars $\}$ in the same triaugles

$$
6720 \quad: 1960 \quad: 12: \frac{1060 \times 18}{6720}-=3 t .
$$

Now the IUJYA, sine of amplitude and sine of declination are the throo sides of a latitudinal triangle. Those throe I may compare with the three Gnomon, palabila aud arsula karan to find the value of any oue.
44. Given the sum of tho sine of declination, sine of the Sun's altitude in prime vertical and the taddhạiti minus kojyé equal to 1440', and given also the sum of the sine of amplitude, the sine of the Sun's altitude in prime vertical and tho vindmarim equal to 1800°. I will hold him, who having observed the given sums.*
45. Given the equinoctial shadow equal to 9 . What longitude must the Sun have in that lati-
Question. tude to give an ascensional differonco of three ainatis? I will hold you to be the best of astronomers if you will answer me this question. \dagger
46. Hitherto it has been nsual to find the length of the Question. Sun's midday shadow, of the shadow of the Sun whon in the primo vorti-

But the AISHA EARNA must be first found to complete the sum of thoso three.

$$
\text { AIBIIA KABYA }=\sqrt{(1 \ddot{2})^{2}+\left(\frac{7}{2}\right)^{2}}=\sqrt{\frac{\overline{i 25}}{4}}=\frac{25}{2}
$$

$\left.\begin{array}{l}\text { Gnomon }=18 \\ \text { PALABIA }=3 t \\ \text { AKBIIA KABNA }=12!\end{array}\right\}=28$ sum of the 3 sidee of a latitudinal triangle..
Now if 28 : $12:$: 1960 : 840 the sine of declination.
Hence the place of the Sun as before.-L. W.

* This question is similar to tho preceding.

In the first sum we have the sum of thrce perpendiculars in three difforont latitudinal Iriangles. In the second we have tho sum of the throe bypotionuses of those same thres Triangles. IIonce wo may say.
sum 3 por. sum of 8 corresponding liy. Gnomon argirarakya
As 1440 : 1800 : : 12 : 16
NOw from axbia zarna to find painabî́
PALIABAA $=\sqrt{(15)^{x}-(12)^{2}}=\sqrt{81}=9$.
Now sine of amplitude, sine of the Sun's altitude in tho Primo Vertical, and the radniriti aro tho three sides of a latitudimel.- L. W.

+ Let m sine of the Sun's doclination.
thon 12: $9:$: $\boldsymbol{\pi}:$ KणJYÁ $=\frac{3}{4} x$.
Again $\sqrt{K^{y}-x^{2}}=$ cosino of declination.
Then as $\mathrm{B}_{\text {: }}$ cos of declination : : sine of uscensional differce. : EUJY
Bine of ascensl. diffce. or OHABAJYA = aine of 3 GHATIS $=$ ain $18^{\circ}=1062^{\circ}$. cosin of decln. X cirarajyá
$\therefore-\frac{X}{\mathbf{B}}=\mathbf{x U Y K}$

Irence may bo found tho sine of tho Sun's docln. and thenco his longi-ludo.-L. W.
cal, and when in an internediato circle (1. c. wheu he has an azimuth of 45°) by three different modes of calculation : now ho who will by a single calculation tell me tho length of those three shadows and of the shadows at any intermediate points at the wish of the querist, shall be held to be a very Sun on the Earth to expand the lotus-intellects of learned astronomers.*

[^59]47. He who, knowing both the azimuth and the longitude of the Sun, observes one shadow of the
Queation. gnomon at any time, or he who knowing the azimuth observes two shadows and can find the palabhá, I shall conceive him to be a very Gardpa in destroying conceited snakes of astronomers.
[On this Bhesearáchárya has given an example in the GanitádHýya as follows.
"Given the hypothenuse of the shadow (at any hour of the day) equal to 30 digits mad tho south brioja* equal to 3 digits : givon also
\[

$$
\begin{aligned}
& \text { or } \Delta \sqrt{x^{2}-144}=a s \mp \in \mathbf{R}_{\text {; }} \\
& \Delta^{4} x^{2}-144 \Delta^{2}=a^{2} x^{2} \mp 2 \mathrm{R} \cdot a x+e^{2} \mathrm{R}^{2} ;
\end{aligned}
$$
\]

$$
\begin{aligned}
& x^{2} \pm 2 \frac{R \in a}{A^{2}-a^{2}} a=\frac{a^{2} B^{2}+144 A^{2}}{A^{2}-a^{2}} ;
\end{aligned}
$$

or $x^{2} \pm 2$ AMYA $x=$ PRATHAMA
$\therefore x^{2} \pm 2 A R Y A x+\triangle R Y A^{2}=$ PRATHAKA $+\triangle M Y A^{2}$
and $\therefore m=\sqrt{\text { PRATMAMA }+A N Y A^{2}} \mp \triangle M Y A$.
But when $A<a$ and the Sun is in the northern hemisphere, the equation
(1) will be $x^{2}-2 A Y Y A \equiv=-$ Pratuaya,
and then $x=A M Y A \pm \sqrt{A N Y A^{x}-f i r i t: ~}$
i. e. the value of the hypothenuse of the shadow will be of two kinds here.

Hence the Rule.
Beasearacuaryi was the firat Hindu who has given a general rule for finding the 8un's shadow whatever be the aximuth; and he was the first who has shewn that in certain cases the solution gives two different results.-B. D.]

- [On a levelled plane draw east and west and soutls and north lines and on
their intersecting point, place Gnomon of 18 digits : the distance between the end of tho shadow of that Gnomon and tho east and west lino is cullen tho suणJa.

It is to be known here that the value of the great buoJs (as stated in 41st verse of the 7th Oh .) being reduced to the hypothelluse of the shadow becomes equal to the beojs (above found).

Or as the Radius
: the great minoja
: : the hypothenuse of the sladow
: the roducod suujs or tho distance of tho ond of the shadow from tho caet and woat line.

This reduced binjsi is called north or south according at the end of the shadow falls north or south of the east and weat line.

It is very olear from this that the reduced brosa will be the conine of the aximuth in a emall circle deseribed by the rudius equal to the shadow.

Or as the shadow
: the reduced bioja
: : radius of a great circle : the cosine of the aximuth.
This is the method by which all Hindus roughly detormine the azimuth of the Sun from the batida of his gnomonic shadow.-B. D.]
the hypothonuse equal to 15 digits, and the north miuja equal to 1 digit, to find the palabhí. Or, given the declination equal to 846 and only oue hypothenuse and its corresponding bhuja at the time, to find the palabis."]
48. First of all multiply one broja of the shadow by the hypothenuse of the other, and the second beoja by the hypothenuse of the
first: then take the difference of these two biousas thas multiplied, if they are both north or if both south, and their sum if of different denominations, and divide the difference or the sum by the difference of the two hypothenuses ; it will be the ratabik.*
49. Low should he who, like a man just drawn up from the bottom of a well, is utterly ignorant of the palabid, the place of the Sun, the points of the compass, the number of the years elapsed from

[^60]the commencement of the yuas, the month, the tithi or lanar day and the day of week, being asked by others to tell quickly the points of the compass, the place of the Sun, \&c., give a correct answer? He, however, who can do so, has my humble reverence, and what astronomers will not acknowledge him worthy of admiration ?*
50. He, who can know merely with the staff in his hand, the height and distance of a bamboo of which he has observed the root and top, knows the nse of that instrument of instruments- (lonins (the difyantra) : and tell me what is there that ho cannot find out!
51. There is a high famous bamboo, the lower part of which, being concealed by houses, \&c. was invisible: the ground, however, was perfectly level. If yon, my friend, remaining on this same spot, by observing the top, will tell me the distance and its height, I acknowledge you shall have the title of being the most skilful of observers, and expert in the use of the best of instruments, dhifantra.
52. Having seen only the top of a bamboo reflected in water, whether the bamboo be near or at a distance, visible or invisible, if you, remaining on this samo spot, will toll mo tho distance and height of the bamboo, I will hold you, though appearing on the Earth as a plain mortal, to have attributes of superhuman knowledge. \dagger
53. Given the places of the Sun and the Moon incroased by tho amonnt of tho procossion of tho oquinox, i. o. Lheir longitudes, equal to four and two signs (respectively) and the place of the Moon decreased by the place of the ascending node equal to 8 signs, tell me whether the Sun and the Moon have the same declination (either both south or one north

[^61]and one sonth), if you have a perfect acquaintance with the Diftriddhida Tantra.
54. If the place of the Moon with the amount of the procession of the equinox be equal to 100 degrees, and the place of the Sun increased by the same amount to 80 degrees; and the place of the Moon diminished by that of the ascending node equal to 200 degrees, toll me whether the Sun and the Moon have the samo declination, if you have a perfect acquaintance with the Duívridduida Tantra.
55. If you understand the subject of the pRTA i. e. the equality of the declinations (of the Sun and the Moon), tell me the reason why there is in reality an impossibility of the páta when there is its possibility (in the opinion of Lalla), and why there is a possibility when there is an impossibility of it (according to the same author).
56. If the places of the Sun and the Moon with the amount of the precession of the equinox be equal to 3 signs plus and minus 1 degree (i. e. 2s. 29° and 3s. 1° respectively) and the place of the Moon decreased by that of the ascending node equal to 118.28°, tell me whether the Sun and the Moon have the same declination, if you perfectly know the subject.
57. (In the Difividdhida I'antra), it is stated that the pata is to come in some places when it has already taken place (in reality), and also it has happened where it is to come. It is a strange thing in this work when the possibility and imposibility of the pKta aro also reversely mentioned. Tell me, O you best of astronomers, all this after considering it well.*
58. I (Bhiskara), born in the year of 1036 of the S'áli-

Date of the Author's birth Vfiana era, have composed this Sidand his work.
years old.
59. We who has a penetrating genius like the sharp point of a large darbia straw, is qualified to compose a good work in mathe-

* [Answers to these questions will be found in the last Chapter of the Gamita-DAYAYA.-B. D.]
matics : excuse, therefore, my impudence, 0 learned astronomers, (in composing this work for which I am not qualified).

60. I, having lifted my folded lands to my forehead, beg the old and young astronomers (who live at this time) to excuse me for having refuted the (erroneous) rules prescribod by my predecessors; because, those who fix their belief in the rules of the predecessors will not know what is the truth, unless I refute the rules when I am going to state astronomical truths.
61. The learned Mahes'wara, the head of all astronomers, the most good humoured man, the store of all sciences, skilful in the discussion of acts connected with law and religion, and a brathmana descended from S'ínpilya (a muni), flourished in a city, thickly inlaabited by learned and dull persons, virtuous men of all sorts, and men competent in the three Viedss, and situated near the mountain Saiya.
62. His son, tho poet and intolligont Biakskara, mado this clear composition of the Siddhánta by the favour of the lotuslike feet of his father; this Siddhinta is the guidance for ignorant persons, propagator of delight to the learned astronomers, full of easy and elegant style and good proofs, easily comprehensible by the learned, and remover of mistaken idens.
63. I have repeated here some questions, which I have stated before, for persons who wish to study only this Pras'nídHyAya.
64. The genius of the person who studies these questions becomes unentangled, and flourishes like a creeping plant watered at its root by tho consideration of the questions and answers, by getting handreds of leaves of clear proofs, shooting from the Spheric as from a bulbous root.

End of the 13th and last Chapter of the Gorádhyifa of the Siddhínta-s'imomant.

APPENDIX.

ON THE CONSTRUCTION OF THE CANON OF SINES.

1. As tho Astronomer can acquire the rank of an Acharya in the science only by a thorongh knowledge of the mode of constructing the canon of sines, Bhiskara therefore now proceeds to treat upon this (interesting and manifold) subject in the hope of giving pleasure to accomplished astronomers.

2 and 3. Draw a circlo with a radius oqual to any number of digits: mark on it the four points of the compass and 360°. Now by dividing 90° by the number of sines (you wish to draw in a quadrant), you will get the arc of the first sine. This arc, when multiplied by 2,3 \&c., will successively be the arcs of other sines. Now set off the first arc on the circumference on both sides of one of the points of the compass and join the extremities of these arcs by a transverse straight line, the half of which should be known the sine of the first arc: All the other sines are thas to be known.
4. Or, now, I proceed to state those very sines by mathematical precision with exactness. The square-root of the differonco botivecn tho squares of tho radius and the sine is cosine.
5. Deduct the sine of an arc from the radius the remainder will be the vorsed sine of the complement of that arc, and the cosine of an arc deducted from the radius will give the versed sine of that arc. Ithe vorsed sine has been compared to the
arrow between the bow and the bow-string : but here it has received the name of versed-sine.
6. The half of the radius is the sine of 30° : the cosine of 30° will then be the sine of 60°. The square-root of half square of radins will ho the sine of 450 .
7. Deduct the square-root of five timos the fourth power of radius from five times the square of radins and divide the remainder by 8 : the square-root of the quotient will be the sine of 36 .

$$
\operatorname{Or} \sqrt{\frac{\mathrm{rad}^{2} \times 5-\sqrt{\mathrm{rad}^{4} \times 5}}{8}}=\operatorname{sine} 30^{\circ}, *
$$

8. Or the radius multiplied by 5878 and divided by 10000 will give the sine of 36°, (where the radius $=3438$.) The cosine of this is the sine of $54^{\circ} .+$
9. Deduct the radius from the squaro-root of the product of

- [This is proved thus.

Let $a=$ sine 18°; and $\therefore \mathrm{B}-a=$ covers 18° or vers 72°.
Then $\sqrt{\frac{R \times v e r s ~ 72^{\circ}}{2}}=$ sine ξ° : (see the 10th verae.)
or $\sqrt{\frac{\sqrt[R(R-a)]{2}}{2}}=$ sine 86°;
but $a=\frac{\sqrt{5 K^{2}-1}}{4}$ (see the 9th verse)
\therefore aine $86^{\circ}=\sqrt{\frac{\mathrm{R}\left\{\mathrm{R}-1\left(\sqrt{5 \mathrm{R}^{2}}-\mathrm{R}\right)\right\}}{2}}=\sqrt{\left.5 \mathrm{~K}^{2}-\sqrt{\overline{5 R^{4}}} . \text { B. D. }\right]}$ $\mathbf{R} \times 5878$
t The Rulo in 8th verse viz., $\frac{x}{10000}$ scoms to be the same as above and to be doduced from it;

$$
\begin{aligned}
& \text { for } \sqrt{\frac{5 R^{x}-\sqrt{5 K^{4}}}{8}}=R_{0} \sqrt{\frac{5-\sqrt{5}}{8}} \\
& \sqrt{\overline{5}=2.887411 \text { \&0. }}
\end{aligned}
$$

and $\therefore 5-\sqrt{\overline{5}}=8.762689$ which divided by $8=.845323$

$$
\therefore \sin 96^{\circ}=\mathbf{R} \sqrt{.345328}=\mathbf{R} \times .5878=\frac{\mathbf{R} \times 5878}{10000} .-\mathbf{L} . \text { W. }
$$

tho squaro of radius and fivo nud divido tho remainder by 4: the quotient thus found will give the exact sine of 18°.*
10. Half the root of tho sum of the squares of the sine and versed sine of any arc, is the sine of half that arc. Or, the sine of half that arc is the square-root of half the product of the radius and the versed sine.
11. From the sine of any arc thus found, the sine of half the arc may be found (and so on with the half of this last). In like manuer from the complement of any arc may be ascertained the sine of half the complement (and from that again the sine of half of the last arc).

Thus the former Astronomers prescribed a mode for determining tho other sincs (from a given one), but I proceed now to give a mode different from that stated by them.
12. Deduct and add the product of radius and sine of biuju from and to the square of radius and oxtract the squareroots of tho halves of the results (thus found), these roots will respectively give the sines of the half of 90° decreased and jncreased by the bruja.

In liko manner, the sinos of half of 90° docreased and increased by the kOTI can be found from assuming the cosino for the sine of bauja.
13. Take the sines of bifusas of two arcs and find their difforence, then find also the difference of their cosines, square

* [This is proverl thns.

Let O bo centro of the circle AIBE and $\angle O=36^{\circ}$, then $\triangle B=2$ sin 18°, and $\angle:(C A B, O B A)$ each of thom $=20$.
1)rair $\triangle D$ bisecting tho $\angle C A B$, thon $\mathbf{\Lambda B}, ~ \triangle D, C D$ will bo equal to onch other.

Now let $x=\sin 18^{\circ}$, then by similnr triangles $\mathbf{C B}: 111=A B: B I)$ or $\mathrm{k}: 2 x=2 x: \mathrm{R}-2 x$;
$\therefore 1 x^{2}=\mathrm{R}^{2}-2 \mathrm{R} x$ which gires
$x=\frac{\sqrt{\overline{5}} \mathrm{R}^{\overline{2}}-\mathbf{R}}{4}-$ D. D. $]$

these differences, add these squares, extract their square-root and halve it. This half will be the sine of half the difference of the sines.* Thus sines can be determined by several ways. 14. The square-root of half the square of the difference of the sine and the cosine of the beujs of an are is equal to the sine of half the difference of the bHuJs and its complement. \dagger

I will now give some rules for constructing sines without having recourse to the extraction of roots.
15. Divide the square of the sine of the bhuja by the half radius. The difference between the quotient thus found and the radius is equal to the sine of the difference botween the

> + Lot $b c=$ sine of any arc and $b g=$ its osino.
> Draw the sine $a d=$ cosine $b g$, then $a h$ its sine will be eqnal to $b o$ and $a f=f f:$
> $\therefore a f^{2}+f f^{2}=a b^{2}: b u t$ as $a f^{2}=f l^{2}$
> $\therefore a f^{2}=\frac{a b^{2}}{\frac{2}{a}}$ and $\frac{a f^{2}}{2}=\frac{a b^{2}}{4}:$
> $\therefore \sqrt{\frac{4 f^{2}}{2}}=\frac{a b}{2}-$ L. W.]

degrees of biluja and its complement.* In this way several sines may be found here.
[As these several rules suffice for finding ouly the sines of arcs differing by 3 degrees from each other and not the sines of the intermediate arcs, the author therefore now proceeds to detail the mode of finding the intermediate sines, that is the sine of every degree of the quadrant. This mode, theroforo, is called Pratibitagajyaka-vidiif.]
16. Deduct from the sine of bHUJA its б̇ठб part and divide

Rules for Anding the sine of erery degree from 1° to 90°.
the ten-fold sine of котi by 573.
17. The sum of these two results will give the following sine (i. o., the sino of bhiuja ono dogreo moro than original bhuja and the difference between the same results will give the preceding sine, i. e., the sine of bHUJA one degree less than original beuja). Here the first sine, i. e., the sine of 1°, will be 60 and the sines of the remaining arcs may be successively found.
18. The rule, however, supposes that the radius $=3438$. Thus the sines of 90° of the quadrant may be found.

Multiply the cosine by 100 and divide the product by 1529.
Rules for finding the 21
19. And subtract the $\pi \frac{1}{87}$ part of sines vis., of $8^{\circ} \frac{s}{4}, 7^{\circ} \stackrel{1}{4}, 11^{\circ} \frac{1}{\text {, }}$, the sine from it. 'The sum of these will 15°, \&o.
be the following sine (i. e., the sine of arc of $30 \frac{3}{4}$ degrees more than original aro) : and the differ-

ence of them will be preceding sine (i. e., the sine of arc $3^{\circ 9}$ degrees less than original arc).
20. But the first sine (or the sine of $3_{0} \frac{3}{3}$) is here equal to $224 \frac{0}{7}$ (and not to 225 as it is usually statod to be). By this rule 24 sines may be successively found.*

21 and 22. If the sines of any two arcs of a quadrant be

Rules for finding the sines of sum and difference of any two arcs.
multiplied by their cosines reciprocally (that is the sine of the first arc by the cosine of the $2 d$ and the sino of the $2 d$ by the cosine of tho first arc) and the two prolucts divided by radius, then tho quotients will, when added together, be the sine of the sum of the two arcs, and the difference of these quotients will be the sine of their difference. \dagger This excellent rule called jya-bi_́vané has been prescribed for ascertaining the other sines.
23. This rule is of two sorts, the first of which is called samésa-mítuna (i. o., the rulo for finding tho sino of sum of two arcs) and the second antara-bhívań (i. e., the rule to find the sine of difference of arcs).
[If it be desired to reduce the sines to the value of any other radius than that above given of 3438.] Find the first sine by the aid of the above-mentioned rule pratibhíaajyakdVIDHI.

24 and 25 . And then reduce it to the value of any now radius by applying the proportion. After that apply the JYAbHífań́ rule through the aid of the first sine and the cosine thus found, for as many sines as are required. The sines will thus be successively eliminatod to the valuo of any now radius.

The rule given in my Paiff or Lílavatí is not sufficiently accurate (for nice calculations) I have not therefore repeated here that rough rule.

[^62]
I N D EX.

Age, birlh, \&e. of tho Author page 261. Armillary Sphere 151, 210.
Astronomical Instruments, 209.
Atmosphere, 127.
Celestial latitudo, 200.
Clopryilrn, 211.
(linkin, 21 2.
Canon of Sincs, 263.
Day of Brahma, 163.
Dny of the Pitris, 163.
Days and nighte, 161.
Joluges, 125.
Drikkarma, 110.
Drijautra, or genius instrument, 221.
Farth, 112.
Jinrth's dinmelor, 122.
Eclipses, 176.
Ipicjeles, 144.
Equation of tho centro, 141, 114.
Errors of Lalla, \&e. 169, 165, 205.
Gnomon, 212.
Horoscope, 166, 211.
Knlpn, 108.
Kendrn, 109.
Ingua, 166, 211.
Lougitudes, 212

Mandaphalá, 109.
Mandochcha, 109.
Month, 129.
Moon, Eolipses of, 176.
Phalaka. Yantra, 213.
Pliness of tho M.non, 206.
Plauots, 128, 135.
Qucstions, 231.
Rising and setting of the heavenly bodies, 196.

signs, 164.

Seasons, 228.
Soven Winds. 127.
Bigh rocheha, 109.
Signs, rising of the, 164.
Sphore, 107.
Sun, Eelipses of, 176.
Swayanvaha Yantra, or self-revolving instrument, 227.
Syphon, 227.
Time, 160.
Winds, 127.
Year, 129.
Yugas, 110.

7,755-8

This book is a precervation photocopy.
It was produced on Hammermill Laser Print natural white,
a 60 \# book weight acid-free archival paper
which meets the requirements of ANSI/NISO Z39.48-1992 (permenence of paper)

Preservation photocopying and binding
by
Acme Bookbinding
Charlestown, Massachusetts
-
1996

[^0]: - [It may be proper to givo notes explaining concisoly the tochnisal terms ocenrring in theso quostions, which have no corresponding torms in English, in order that the English Astronomor may at once apprehend these quastions without waiting for the explanation of them which the Author gives in the sequel.B. D.]
 + [To find the place of a planet at the time of sun-rise at a given place, the eeveral important corrections, i. e. the Udata'riara, Bhoja'mtara, Desínstara, and Crara are to be applied to the mean place of the planet found out from the aimarana by the fact of the mean place being found from the Abargasa for the time when a fictitious body, which is supposed to move uniformly in the Equinoctial, and to perform a complete revolution in the samo time as the Sun, reachios the horizon of Lanka'. Wo now proceed to explain tho corrections.
 The Udapa'mtara and Bioja'mpara correotions are to be applied to the mean place of a planct found from the Aimargana for finding the place of the planet at the truc time. whon tho Sun comes to the horizon of LANEA' arising from thoso two portions of the equation of time respectively, one due to the inclination of the ecliptic to the equinoctial and the other to the unequal motion of the Sun in the ecliptio.

 The Desis'rtara and Cbara comrectionsare to be applied to the mean place of a planot applied with the Udapajerara and Beujaintara corrections, for finding the place of the planet at the time of sun rise at a given place.

 The Des'a'mrara correction due to the longitude of the place reckoned from the meridian of Lanka' and the Crapa correction to the ascentional difference. 13. D.]
 \ddagger [Maxdocicris is equivalent to the higher Apsic. The Sun's and Moon's Mandoonciras (higher Apsides) are the same as their Apogees, while the other plancts' Mandoonciras are equivalent to thicir Aphelions. B. D.]
 § [8'íarrocious is that point of the orbit of each of the primary planets (i. o. Mars, Meroury, Jupiter, Venus and Saturn) which is furthest from the Farth. B. D.]
 || [Kempra is of two kinds, one called Manda-xempra corresponde with the anomaly and the other called $8^{\prime} r^{\prime}$ anra-kerdpa is equivalent to the commutation added to or subtracted from 180° as the Bigra-mendra is greater or less than $\left.180^{\circ} \mathrm{B} . \mathrm{D}.\right]$

 T [MANDA-pIALA is the same as the equation of the centre of a planet and 8'robra-phaya is equivalent to the annual parallax of the superior planet; and the olongation of the inferior planets. B. D.]

[^1]: - [Dpixparga is the correotion requisite to be appliod to the place of a planet, for finding the point of the ecliptic on the horizon when the planet reaches it. This correction is to be applied to the place of a planet by means of its two portions, one called the Krana-Dpirgarma and the other the Kigha-dpirerarya. The place of a planet with the Kyana-drificarya applied, given the point of the ecliptio on the sir o'clock line when the planet arrives at it a and this correctod place of the planet, again with the KEsHA-Deriexarana applied, gives the point of the ecliptic on the horizon when the planet comes to it. B. D.]
 † The Kpita, Trepá, Dwa'para and Kali aro usially called Yuaas: bit the four together form only one Yooa, according to the Siddiri'nta system, each of these four being held to be individually but a Yuas'mairas. L. W.

[^2]: * [Sama-sa'nkU is the sine of the Sun's altitude when it comes to the prime verlic:il. 13. 1).]
 \dagger [Aln lieclipse of tho Moon is caused ly her cutering into the liarth's shadow and as the place of the Earth's shadow and thint of tho Moon is the same at the full moon, the conjunction of tho Karth's shadow and the Moon must luypen at the same time ; and nn Eelipse of the Sun is causod by the interposition of the Moson between the Eurth and tho Sun, and the conjunction of the Sun and Moon ill like mnnnor must happon nt tho new moon, as then the place of tho Sun and Moon is the eame. As this is the case with the eelipses of both of hem (i. o. both tho Sun and Moon) the querist asks, "If the middlo of a lunar eclipse \&c." It is scarcely necessary to add that the assumption that tho middle of a lunar eclipse takes place exactly at the full moon, is only approximntely correct. B. J.]
 \ddagger ['The Lampara is equivalent to tho Moon's parallax in longitude from the Sun reduced into time by means of the Moon's motion from the Sun : and tho Nati is the samo as the Moon's parallax in lutitude from the Sun. B. D.]

[^3]: - This verse has a double meaning, all the native writers, however grave the subjeot, boing much addicted to concoits. The second interpretation of this verse is as follows:

 Ah! why does the most learned of Brahmans, though distinguished by his immaculate conduot, lose his pure honour and influence as it were from his misconduct caused by derangement? It is no wouder that the said Braluman after having met with a Brahman akilled in the Vevas, and by having rocourse to him, thencoforth booomce distinguished for liis crininont good couduct by gradual augmentation of his illustriousucas. L. W.

[^4]: - [It is manifest from this that neither can the Earth by any means fall dowuwards, nor the mon situated at the distances of a fourth part of the circumference from us or in the opposite hemisphere. B. D.]
 t [He who resides on the Lharth, is not conscious of the motion of it downwards in apace, as a man sitting on a moring ship does not perceive ita motion, B. D.]

[^5]: - [This was Brabsaba's own notion ,-but ovon on the more corrcot prinoiplo, that all bodies full with equal rapidity, the argumout holds good. B. D.]

[^6]: * [As the point where the equator outs the horizon is the east, the sun therelore rises due east at time of the equinoxes but on this ground, we cannot determine the direction at Merd [the north pole] beoause there the equator coincides with the horizon and consequently the suu moves at MykJ under the horizon the whole day of the equinoz. Yet the ancient astronomers mainfained that the direction in whioh the yamarofi lien from Mend is the cast, beoause, according to their opinion, the inhabitants of Mrud saw the sun rising towurds the yamaropi at the beginning of the ralpa. In the same manner, the direction in whioh LaNzí lies from mount Mesu is south, that in which Romagapattama lien, is woet, and the direction in whioh Siddua-

[^7]: A curious fact is reheareed. Geographioal Anomaly.
 46. Only Yamakoti lies due east from UJJayinf, at the distance of 90°

[^8]: - [From the east and west points, as centres, with a common radius describe two arcs, interseoting each other in two points, the place contained by the arce is called Mateys "a fish" and the intersecting points are the north and south points. B. D.J

[^9]: [* As the sun or any licavenly body whon it roachos the Prime Vertical of any place is called duc east or west, so according to the Hindu Astronomical language all tho places on the Earth which aro situated on the cirole corresponding to tho Primo Vertical aro due cast or west from the place and not: those which are situnted on the parallel of latitude of the place, that is the places which havo the angle of position 90° from any place are duo east or west from that place. Aind this all directions on the Farth aro shown by incans of tho ungle of position in the Mindu Astronomical works. 13. D.]

[^10]: - [The diameter and the circumference of the Farth here mentioned are to each other as 1250: 8987 and the demonstration of this ratio is shown by Bekibyaricekipa in the following manner.

 Take a radius equal to any large number, such as more than 10000, and through this determine the sine of a smallor arc than even the 100 th part of the circumference of the cirole by the aid of the canon of sinee (Jyotratri,) and the sine thus determined when multiplied by that number which represents the part which the aro just taken is of the circumferenoe, beoomes the longth of circumference because an are smaller than the 100th part of the circumference of a circle is [scarcely diferent from] a straight line. For this reason, the cir cumference equal to the number 62832 is granted by ARYABMATTA and the others, in the diameter equal to the number 20,000. Though the length of the circumference determined by extracting the square root of the teufold square of the diameter is rough, yet it is granted for convenience by Sridiahícerárya, BraifMagopra and the others, and it is not to be supposod that they wore ignorant of this roughness.-B. D.]

[^11]: - Let the diameter of a sphere be 7 : the circumference will be 22 nearly. The ares of a circle whose diameter is 7 will be about 38! ; that of a circlo whose diameter is 11 (1 circumference) will be about 899 this 89 ; is little less than $2 \frac{1}{1}$ times 88! . L. W.

[^12]: Here, by substituting the valucs of tho 24 sinces statod in the Ganira'dia'za we have
 $A=301 \frac{3}{6}$ viz. the diancter of the globe where the circumference $=96 . \quad$ L. W.
 [IIEre, the demonstration of the rule (nultiply tho superficial area of tho sphoro by the diameter and divide the product by 6) for finding out the solid content of the sphere is shown by Biajeskara'ciairya in the following manner.

 Suppose in the sphere the number of pyramids, the height of which is equal to the radius and whose bases aro squares having sides equal to 1 , equal to the number of the suporficinl area of the sphere, then
 'The solid contents of overy pyramid $=: \mathbf{R}$.
 = diameter
 nnd the number of pyrnmids in tho sphero is equal to tho number of tho superlicial contents of tho sphero.
 \therefore The solid content of the sphere $=t$ diameter \times superficial area.-B.D.]

[^13]: - Vide verses 67,68,69, Bha'biara'ora' bya does not answer the objection which these verses supply to his theory of the Earth being the centre of the system. The Sun is here made the principal object of the syatem-the centre of the Branca'npa-the centre of light whose boundary is supposed fixad: but if the Sun moves then the Hindoo Brahma'spa must be supposed to be constantly changing its Boundaries. Subbuji Bápú had not failed to use this argument in favour of the Newtonian aystem in his S'ibomani Praka's'a, vide pages 55, 56. Bha'sxara'oha'rya however denies that he can father the opinion that this is the length of the circumference limiting the Bramma'npa and thus saves himself from a difficulty. L. W.
 [Mr. Wilkinson has thus shown the objootion which Subbaljo Bápú mado to the assumption of the Sun's motion, but I think that the objection is not a judicious ono. Because had the length of the circumforence of the Bramesinpa been changed on account of the alteration of the boundary of the Sun's ligits with him, or had any sort of motion of the stars boen assumed, as would have been grauted if the earth is supposed to bo fixed, then, the inconvenience would havo occurred; but this is not tho caso. In fuct, as wo cunnot lix any boundary of the light which issuod from the sun, the statal longth of the circumforonco of tho Beaumínpa is an innginary one. For this ronson, Buískauédifíya doos not admit this stated length of the circumforenco of tho Bhailara'nya. Me stated in his Ganita'durara' in the oominentary on the verse 68th of this Chapter that "those only, who have a perfert knowledge of the Bramia'mpa as they have of an a'srama' fruit held in their palm, can say that this length of the cirounference of the Brayma'mpa is the true one;" that is, as it is not in man's power to flx any limit of the Brinima'rpa, the said limit is unreusonable. Therefore no objection can be possibly made to the system that the Sun movos, by aspuming such an imaginary limit of tho Bhanminna which is littlo losis inspossible than the existenco of the heavenly lotus.-B. D.]

[^14]: - [Had the Sun moving with uniform motion on the equinoctial, the each minute of which rises in cach 18π, the number of $\Delta 808$ ayual to the number of tho minutes of the Sun's duily motion, being adiled to the 60 sideraal arrapiras, would have invariably made the oxuct longth of tho truo terrestrial day us Ladiaa and othors say. But this is not tho east, boculuss) tho Sun moves with unequal motion on the ecliptic, the equal portions of which do not rise in equal times on account of its being oblique to the equinoctional. Therefore, to find the exact lenyth of the true terrestrial day, it is necessary to determine the time which the minutes of the Sun's daily motion take in rising and then add this time to 60 sidereal Guatira's. For this reason, thu turrestrial day determined by Lacla and others is not a truo but it is a monn.

 The diffurence between the oblique ascension at the begiming of any givon dlay, and hat at the und of it or at tho boginning of tho next day, is tho time which the minutes of tho Sun's motion at tho day above alluderl to take in rising, but as this cannot be easily detorminod, the anciont Astronomers having determined the periods which the signs of the ecliptic take in rising at a given place, find the time which any portion of a given sign of the ecliptic takes in rising, by the following proportion.

 If 30° or 1800^{\prime} of a sign : take number of tho 4808 (whioh any given sign of the ecliptio tukoe) in rising at a giren place : : what time will any portion of the sign above alluded to take in rising p

 The calculatiou which is shown in the 5th vorse depends on this proportion.13. D.]

[^15]: - [After the commencement of a YUGA, a lunar month terminates at tho ond of AMATA'gya' (now moon) and a sagra month at tho moan varsicabicasanxra'nti (i. e. whon tho mean Sun entors the socond atellar sign) which takos place with 54 g .27 p .31 v .521 p . after the new moon. Aftorwards a second lunar month ends at the 2nd new moon after which the Mitiona-sarixea'rit takes place with twice the Ghatis. \&o. above mentioned. Thus the following Sansxba'bits maria \&o. take place with thrice four times do. those Giratis, \&e. In this manner, when the 8axERa'umI thus going forward, again takes place at new moon, the number of tho passed lunar months exceeds that of the savra by one. This one month is called an additive month : and the satra months which an additive month requires for its lhappening can be found by the proportion as follows.

 As 54 ghatis, 87 p . \&o. the difference between a lunar and a saura
 : One saura month
 : : 29, 81, 60 the number terreatrial day \&o. in a lunar month
 : 82, 15, 81, \&o. the number of saura months, dayn, \&o.-B. D.]
 \dagger [At the beginning of a XALPA or a rUGA, the terreatrial and lunar daya begun aimultaneously, but the lunar day being less than the terrestrial day, terminated before the end of the terreatrial day, i. e. bofore the next sun-rise. The interval between the end of the lunar day and the next sunrise, is called AVAMA-8'resBa the remainder of the subtractive day. This remainder increases every day, thorofore, when it is 60 Guspixis (24 lioura), this constitutes a Avama day or subtractive day. The lunar daye in which a subtractive day occure, are found by the following proportion.
 lunar month.
 : 1 lunar month or 80 tithis
 : : a whole terrestrial day : $64-1$ tithis nearly.-B. D.]
 \ddagger The objects of these two versee seems not to bo more than to assert that the fourth term of a proportion is of the same denomination as the 2nd.-L. W.

[^16]: * [The meaning of these 4 verses will be well understood by a knowledge of the rule for finding the $\operatorname{Abageana}$, we therefore show the rule here.
 In order to ind the aifaraska (elapsed terrostrial daye from the commencement of the Kalpa to the required time) astronomers multiply the number of satia years expired from the beginning of the Kaipa by 12, and thus they get tho numbor of saura noontha till tho last Mrgia Samirramti (that is, the timo when the Sun enters the 1st sign of tho Zodino called Aries.) To theso monthe they add thon tho passol lunar monelis Ciasitra \&o., considoring thom as saura. These sava monthis becomo, up to the time when the Sun enters the sign of the Zodiac corresponding to the required lunar month. They multiply then the number of these monthis by 30 and add to this product the number of the passed titiris (lunar days) of the required month considering them as sadra days. The number of savia days thas found becomes greater than that of those till the oind of the required tithit by the admimasa s^{9} stifa. To mako theso sajra days lumar, they determino tho elapsod additivo monlis by tho proportion in tho following maamer

 > As the numbor of gavra days in n Kalpa
 > : the number of additive months in that period
 > : : tho number of saura dinys just foumil
 > : the number of additive moinths ulapmed

[^17]: rise in equal periods. For this reason, the Sun does not come to the horizon at Lamei' at the end of the Arargana. Therefore the places of the planets dotermined by the mean Abargana, will not be at the sun-rise at Lanka'. Hence a correction is necessary to be applied to the places of the planets. This correction called Udapintara has been first invented by Bbisharacikrya who consequently abuses them who say that the places of the planets determined by the moan Ahargana become at the time of the bun-rise at Laniki.-B. D.]

 - The difference between tho mean and truo Amarananis is that part of the equation of time which is due to the obliquity by the eoliptic.-L. W.
 + [This calculalion is nothing else than the following simple proportion
 If the number of As0s in a nyothemeron
 : daily motion of the planet
 :: the difference botween the true aud moan Auaucanas givo.-B. J.]

[^18]: - This amount of correction is determined in the following mannor.

 The zorasis between the midline and the given place, in the parallel of latitude at that place, which is denominated Spabita-paridiri ara called, Des'ántara yojanas of that place. Then by the proportion.

 As the number of yojanas in tho Spasuta-pauidit: 60 aifatizas: : Drga'npara pojaras: the difference between the time of sun-rise at midline and that at a given place. This diffurenco callod Dra'a'atara ahatika's is tho longitudo in time east or west from Lanka'. Again
 As 60 ofatika's : daily motion of the planet : : Drsanta'ba airatiza's : the amount of the correotion required.

 Or this amount can be found by using the proportion only once such as follows
 As the number of yojanas in the Spasuta-pamidiit: daily motion of tha planet: : Des'antard. YOJANAB : the zame amount of the corroction ubove found.-B. D.]

[^19]: - [When, 24 sines are to be dotermined in a quadrant of a circle, the 3 sines, i. e. 12th, 8 th and $16 t h$, can be easily found by the method here given for finding the sines of $45^{\circ}, 300$, and the complement of $30^{\circ}, \mathrm{i} .0 .60^{\circ}$. Then by means of theso three ninos, the rest ant bo found by the method for finding tho sine of half an are, ns follows. From the 8 th eine, the 4 th and the co-sine of the 4 th i. e., the 20th sine, can be detorminod. Again, from the 4th, the 2nd and 22nd, and from tho 2nd, tho let and 23 rll , oan bo found. In liko manner, thio 10 th $14 \mathrm{~h}, 5 \mathrm{~h}, 10 \mathrm{~h}, 7 \mathrm{lh}, 17 \mathrm{lh}, 11 \mathrm{th}$, and 18 lh , ean also bo found from the 8 th sine. From the 12th aguin, the Gth, 18th, 8rd, 21st, 9 th and 15 th can be determined, and the radius is the 24th sine. Thus all the 24 sines are found. Soveral other methods for finding the sines will be given in the sequel.-B. D.]
 [\dagger Bia'bxara'cha'bya maintains that the Earth is in the centre of the Universe, and the Sun, Moon and the five minor planete, Mars, Mercury, \&c. revolve round the Earth in circular orbits, the centres of which do not ooincide with that of the Earth, with uniform motion. The circle in which a planet revolves is called l'rativeritta, or excentric circle, and a circle of the same size which is supposed to have the same centre with that of the Earth, is called Kaigha'vpitta or concentric circle. In the circle, the planet appears to revolve with unequal motion, though it revolves in the excentric with equal motion. The place where the planet revolving in the excentric appears in the concentric is its truc place and to find this, astronomers apply a correction called MANDAphala (lat equation of the centre) to tho mean place of the planet. A mean planet thus corrected is called KANDA-BPAshfa, the circle in which it revolves manda-phatifritta (lst excentric) and its farthest point from the oentre of the concentric, mandocicer (1st higher Apsis). As the mean places of the Sun and Moon when corrected by 1st equition become true at the centre of the Earth, this corrcetion alone is sufficient for them. But the five minor planots, Mars, Mercury, \&c. whon corroctod by the lst equation are not true at the centre of the Earth but at another place. For this reason, astronomers having assumed

[^20]: - All the Tindu Astronomers seem to coincide in thinking that the horizontal parallax farana-lambana of all the planets amounts to a quantity equal to I'sth of their daily motion.-L. W.

[^21]: - The word Kendra or centre is evidently derived from the Greek word nevtpor and means the true centre of the planet.-L. W.

[^22]: It also follows from this that, when cos. k is equal to a in the rarryanr EENDRA, then h will be equal to sin. k, otherwise h will always bo greater than sin. k and consequently $s x$ will be less than a. Hence, when k is equal to sin k, * will then be greatest and equal to a, i. e. the equation of the centre will be greateat when the hypothenuse is equal to the sine of the ExNDRA, or when the planet reaches the point in the excentric cut by the transverse line in the concentric. Thorefore, the centre of the oxcentric is marked at the distance equal to the excentricity from the centre of the concentric (as stated in the V 12th.)-B. D.]

 - [Thus, the mean planet, corroctod by tho lat equation, lrecomes MaNDA-sPABITTA and this process is called the manda process. After this, the MANDA-bPaBETA when rectined by the br'ginga pirala, or 2nd equation, is the bpasefa planet, and this end proceas is termed the s'rairia process. Both of these processes, MANDA-SPABBTA and BPABETA are reckoned in the TMAMFpala or the orbit of the planet as hinted at by Bhasmarioisabya in the commentary called VAband-binsifya in the sequel. These places are assumed for the eoliptic aleo without applying any correction to them, beaanse the correctiou required is verg small.-B. D.]

[^23]: * [For this reason, lanving assumed the manda-bpasmita planet for the mean, which manda-spashta can be determined in the concentric by describing the excentric circle \&c. through the ment planct and mandocicias, make the place of the stellar Arics from the manda-spasupa place in the reverse order of the signs and then determine the place of the s'ianizochoria in the order of the signs. Through the places of the stellar Aries and s'ignrocicis describe tho 2ndexcentric circlo sec. in the way mentioned before, and then find the place of the true planet in the concentric.-B. 1).]

[^24]: - In (Fig 2) $E \boldsymbol{k}$ is the spadta-rofy, P E the hypothenuse, T the apparent place of the planet in the concentrio and T M the equation of the centre. This equation can also be found by the theory of the epiojcle in the following manner.

 Draw \mathbf{T} \& perpendicular to $\mathbf{E} \mathbf{M}$, then \mathbf{T} \& will be the aine of the equalion; let it be denoted by x, the xendea in the excentrio by k_{3}, the excentrioity by a_{9} and the hypothenuse by $h:$ then

 $$
 \begin{aligned}
 & \mathbf{B}: \sin k=a: \mathbf{P} k \text { the BIXOJA-PHALA } \\
 & \therefore \text { the BHOJA-PRALA }=\frac{a \sin k}{\mathbf{R}}
 \end{aligned}
 $$

 Now, the triangles ET \mathbf{n} and $\mathbf{F} \mathbf{P} \mathbf{f}$ are similar to each other

 $$
 \begin{aligned}
 & \therefore \mathbf{R}: \mathbf{P} k=\mathbf{R}: \mathbf{T} \\
 & \text { or }: \mathbf{P K}=\mathbf{R}: \infty \\
 & \therefore \quad \equiv=\frac{1}{n}
 \end{aligned}
 $$

 that is, the beuja-prama multiplied by the radius and divided by the hypothenuse is equal to the sine of the equation.

 $$
 \begin{aligned}
 & \text { But } P k=\frac{a \sin k}{\mathbf{R}} \\
 & \therefore \text { by subetitution } \\
 & =\frac{a \sin k}{R} \times \frac{R}{h}=\frac{a \sin k}{h}, \text { the sine of the oquation ns }
 \end{aligned}
 $$

[^25]: - [The beuja-peasid, determined by means of the aine of the first merndia of the planet (i.e. by wultiplying it by the periphery of the 1st epicycle and dividing it by $\mathbf{8 6 0 0}$) has been taken for the sine of the lat equation of the centre : and whint we have shown in the note on the V. 28 and 29, that the birojapirsus, whon inultiplied by tho rulius and divider by the hypothonuse, becoinus the sine of the equation may be underatood ouly for linding the zud equation of the fivo minor planete and yot for detormining the lat oquation.

 Somesay that the onission of tho hypothenuso in the let process has no other ground but the rery inconsiderable difference of the reault. But brateaGUPTA maintains that the periphery of the lat epicyole, varies according to the liypothenuse; that is, their ratio is alwaye the asane, and the periphery of the 1st opiogole, mentioned in the Ganirídirifya, is found at the instant when the hypothonuse is equal to the radius. For this reason, it is necessary at frrt to find the true periphery through the hypothenuse and then determine the lat equation. But, he declares that by so doing; also the sine of the equation becomes equal to the BuOJa-phali as follows.

 As R: lat periphery $=$ the hypothenuse : the true periphery

 $$
 P \times h
 $$

 \therefore the true periphery $=\frac{P K}{E}$, and consequently the undJA-PIIALA in the true opiogale $=\frac{\mathbf{P} \times k}{\mathbf{R}} \times \frac{\sin k}{8600^{\circ}} ;$
 \therefore the aine of the lat equation $=\frac{\mathbf{P} \times \boldsymbol{k}}{\boldsymbol{R}} \times \frac{\sin \boldsymbol{k}}{860^{\circ}} \times \frac{\mathbf{R}}{\boldsymbol{k}}$ and abridging $=$ P. $\sin k$
 360° whioh is equal to the sadja-piata. Hence the hypothenuse is not 360°
 used in the lat process.

 statod in the Ganitíuluyíy has no commootion with the faot atated in this s'roxa und therefore many say that this s'mesa does not belong to tho toxt.-B. D.]

[^26]: - The ancient astonomers Lalla, S'bipatt \&c. say that the true motion of a planet equals to its mean motion when it reaches the point of intersection of the concentric and excentric. But Bias'skara'crarya denging this, sayp, that when the planet reaches the point when the transverse axis of the concentric cuts the oxsentric and when the nmount of equation is n maximum, the true motion of n planct becomuen eymint tor its monn motion. For, suppose, p_{1}, p_{s}, p_{3}, \&ec., arc the mean places of a planot found on successive days at sun-rise when the planet procoeded from its higher or lower apeis and $e_{10}{ }_{c}{ }_{g}, e_{n}$, \&ec. are the amounts of oquation, thon $p_{1} \pm \boldsymbol{e}_{1}, \boldsymbol{p}_{2}, \pm e_{2}, p_{a} \pm e_{3}, \& c$. will be the truo places of the planct,
 $\therefore p_{9}-p_{1} \pm\left(e_{9}-e_{1}\right), p_{8}-p_{9} \pm\left(e_{3}-r_{8}\right), p_{4}-p_{8} \pm\left(e_{4}-e_{2}\right)$, \&c. will be the true inotions of the planet oll surcessive days. Now, as the difference between the true and mean motions is called the gatipiala, by cancelling therefore, $p_{2}-p_{1} p_{8},-p_{g}$, \&c. the purts of the true inotions which are equal to the mean motion, the remaining parts $e_{g}-e_{1}, e_{3}-e_{9}$ deo. will evidently bo the gatiphalas that is the differences betiveon tivo successive amounts of equation are the eatipialas. This, it is plain that the gatipiala entirely deponds upon the amount of equalion, but as the nmonnt of equation increases, so the gatipuala is decreased and therefore when it is a maximum, the gatipaada will indifintely be decreused i. e. will be equal to nuthing. Now as the amount of equation becomes n maximum in that place where the transverse dinnneter of the concentric circle cuts the excontric, (sce the note on verses 15,16 and 17) the gatiphala, therefore becumes equal to nothing at the same place, that is, in thint very place, the true motion and mean motions of a planet are equal to cach other. Ilnving thus shown a proof of his own nssertion, Bitaskara'ománya sars that what the ancient astronomers sintel, that the true and mean motions of a planet are eqnal to each other when the planet comes in the intersection point of the concentric and excentric circles, is entirely ungrounded.-B. D.]
 t According to the method abore mentioned, if the place of the higher apsis and that of the planet be changed, and the planet's place be mnrked, the motion of the planet will be in a path like tho dotted line ns shown in the dingram.

[^27]: It is to be observed here that when the planet comes to the places a, a de. in the dotted line, it is then at its higher apsis, when it comes to the placee o, c and c, it is at its lower, and whon it comes to b, b \&o. it appeare, stationary : and when it is moving in the upper aro $b a b$, its motion being direot appears quicker, and when in the lower aro b ob, its retrograde motion is seen.-B. D.]

 - ['Ihese abjes are equivalent to that part of the equation of timo, which is due to the unequal motion of the sun on the ecliptic.-B. 1).]
 + Mountains are said by Hindu theologians to have originally had winge.

[^28]: - The sphere of the fixed stare which is mentioned here is called the bingoma starty sphere. This bhagola is assumed for all the planets, instead of fixing a separate sphere for anch pinnet. This sphere consists of the ciroles eoliptic, equinoctial, diurnal circles, \&c. whioh are moveable. For this reason, this ephero is to be firmly fixed to the polar axis, so that it may move freely by moring the axis. Beyond this sphere, the kragola celestial sphere which consists of the prime vertienl, meridinn, horizon, \&ec. which remain fixed in a given latitude is to be attached to the hollow oglinders. Having thus eeparately fixed these two spheres, astronomers attach, beyond these, a third sphero in which the circles forming both the spheres raygola and bHagola are mixed together. For this reason the latter is called dgigaon the double sphere. And as the spherical fingers are well seen by mixing together the two spheres enigola and basgola, the third sphere which is the mixture of the tro spheres, is separately attached.-B. D.]

[^29]: - The circle of declination or the hour circle passing throngh the east and west points of the horizon is called UNMANDALA in Sauskrit; but I am not acquainted with any corresponding torm in English. In the treatise on astronomy in the Encyoloperdia Metropolitana the prime vertical is named the wix o'clock line. 'This term (six o'clock line) should, I think, be applied to the unmandala, because it is always six o'clock when the sun arrives at this oircle, tho dnmanpala. Tho prime vortiche or tho sama-manimata of tho shablitit cannot, with propriely, the culled tho six o'uloct lino: becuuso it is ouly twice a ycar that it is six o'clock when the sun is ut this circlo, the prime vertical.B. D.]

[^30]: - Sco the noto on 2 Verse.
 \dagger ['Ile Sun revolves in the ocliptic, but the planets, Moon, Murs, \&o. do not revolice in that circle, and the planes of their orbits are inclinod to that of tho ecliptic. Of the two points where the planctary orbit cute the plane of the ecliptic, that in which the planct in its revolution rises to the north of the ocliptic is called its PA'TA or ascending node (it is nsually called the mean PA'TA) and that which is at the distance of six signs from the former is called ite sashadbua pa'ta or descending node. 'The pa'ta of the Moon lies in its concentric, because the plane of its orbit passes through the centre of the concontric, i. o. through the centre of tho Earth; but the Pa'Tas of the other plancts aro in their second execentric, becauso tho planes of their orbits pmess through the eentros of their 2nd exusntrics, which centres lio in the plane of the celiptic. When the planet is at nny othor place than its nodes, the distance botireen it and tho plano of the ecliptic is called its north or south latitude ns the planet is north or south of the ecliptic. When the planct is at the distance of 3 sigus forwnrd or backward from its $\mathrm{FA}^{\prime} \mathbf{T A}$, it is then at the grealest distance north or south from the ecliptic : This distance is its grealost latitude. Thus,

[^31]: the latitude of the planet begins from its PA'TA and becomes extreme nt the distance of 8 signs from it, therefore, in orilue to flind the latitude, it is necessury to binow tho distance butwein tho phanet and its ra'ra. 'Ihis distanco is rymal to tho sum of tho places of the planet and its ma'ra, becunec all pa'ras movo in antecedentia from the stellar aries. This sum is culled the vixsuepa-mendra or the argument of latitude of the planet. As the Pa'ta of the Moon lies in her concentric, and in this circle is her true place, the sum of these two is her Vixshepa-EENDMA, but the Pa'ta of any olher planet, Mars, \&e. lics in its 2ad excentric and its manda-spashta place (which is equivalent to its holiocontric placo) is in that circlo, therefore its virsirgea-xendea is found by adding tho placo of ite Pa'ta to ite manda-spasilta placo. 'I'his sidasirta. Pa'ra of tho planet is that which being aileled the tho true place of tho planet, eifunls its viksingra-xendua for this renson, it is found by reversely applying the end equation to ite mean Pa'ta. As
 \therefore spabita Pa'ta + true place of the planet,
 $=$ VIEBERPA-EENDEA,
 $=$ place of the Manda spasita planet + mean PA'TA,
 $=p$, of the m.s.p. \pm 2nd equation $+m . \mathrm{P} \mp$ 2nd equation,
 $=$ true plase of the planet + inean $P A^{\prime} \mathbf{T A} \pm$ 2nd equation, \therefore spasita ra'ta $=$ meni ra'ta \mp zinl equation.
 'The place of this bPasnta Pa'ta is to be reversely marked in the ecliptic from the stellar arics. - B. D]

[^32]: * The motion of the Krinti-pata is in a contrary direction to that of the

[^33]: * [See the nodes on V. 11, and F. 18, 14, 15. -B. D.]
 + [In all the original astronomical works, the sum of the PA'TA and s^{\prime} farmoce. cisa of Mercury and Venus, is assumed for their virshbpa-mendma, and through this, their latitude is determined. But the latitude thus found would be at the place of their s'farrooriana and not int their own place, because their places are different from those of their s'famboohoras. To remove this dimulty, Bma'bxea'oEa'rea writes. "The exact revolutions \&e." But the difficulty arises in the supposition that, the earth is atationury in the centre of the universe and all the planete rovolve round her, booause we are then bound to grant that the mean places of Mercury and Venus are equal to that of the Sun, and hence their places will be different from those of thoir s'farrocicesas. But no inconvenience ocours in the supposition that, the Sun is in the centre of the universe and all the planets together with the earth revolve round him. Por, in this case the places of the s'farroonoras of Mercury and Venus are their own holiocentric places, and consequently the sum of the places of their s'fambochoras and pa'tas will be equal to the sum of thair own places and thoeo of their PA'TAS, that is to their VIEsirgPagendua. For this roaeon, their lutitude found through this, will bo at their own places. Now, it is a curious fact that, the revolutions of the pátas of Mercury and Venus, stated in the original works, are such as ouglit to be mentioned when it is supposed that the Sun is in the middle of the universe and the planets revolve round him, and not when the Earth is supposed to be stationary in the centre of the univeree. From this fact, we oan infer that the original Authore of the Astronomical works know that all the planets togethor with tho Rarth revolvo round tho Sun, and consequontly thoy atated tho smullor amounts of tho revolutions of the PA^{\prime} 'ras of the Morcury and Venus. Wheu this is the casc, why ia it supposed that all the planets revolve round the Earth, because the Bpherios oan more easily bo understood by this supposition than by the other.B. D.]

[^34]: * [The times found by the arce intercepted between the horizon and the six o'clock line, of the three diurual circles attached at the end of the first 8 signs i. e. Aries, Taurus and Gemini are called the orara-ma'las or the ascensional differenoes of these signs, and the difforences of these orama-ra'ras are called the oftara-kilanpas of those throo signs.

 As, whore the padamias is 5 digits or tho latitudo is nonrly 221° north, the nsconsional differonces of tho 3 first signs are 297, 541 and 642 480s, and the dif. feronecs of those i. c. 297, 241 and 101 are tho Cllara-khanpas of those signs.

 I'heeo are again tho oriza-misangas of the following three signs inversely i. o. 101, 2.14 and 297 asus.
 Thus the chaza-xinanpas of the first six signs answer for the following six signs.-B. D.]

[^35]: - [When the place of the horoscope is to be determined at a given time it is neceasary at firat to ascertain the height and longitude of the nonageaimal point from the right ascension of mid-heaven, and then by adding 9 signs to the longitude of the nonagesimal point, the place of the horoscope is found: but as this way for fluding the pluce of the horosoope is very tedious, it has been dotermined otherwise in the BIDvHA'mras.

 As, from the periods of rinings of the 18 signs of the ecliptio whioh are determined in the Siddhantas, it is very easy to find the time of rising of any portion of the ooliptic and vice veras, wo oan find a portion of the coliptio corresponding to the given time from sun-rise through the longitude of the Sun then determjned and the given time. The portion of the ecliptio which can be thus found is ovidently that portion of the ooliptic intercepted between the plece of the Bun and the horizon. Therefore by adding this portion to the place of the Sun, the plece of the horoscope is found. Upon this principle, the following commun rule which is givon in the Siddeanras for finding the place of the horoecope is grounded.

 Find first the true place of the Sun, and add to it the amount of the procesaion of the equinox for the longitude of the Sun. Then, from the longitude of the Sun, the sign of the ecliptio in which the Sun lies and the degrees of that sign

[^36]: * [If it be asked whether the time at the end of which the horoscope is to be found is terrestrial or sidereal time; if it be terrestrial, how it is that you subtract from that the rising periods which are of different denomination on account of their being sidereal, and why the sun's instantaneous place i. e. the place determined for the hour given is used to ascertain the biogys time, the given time is reckoned from sun-rise and the shogra degroes of tho sign in which tho sun is, riso gradually above tho horizon aflor sm-risc. Ifenco the bioays degroes of the sign of the Sun's longitude, dutermined at tho timo of sun-rise, should be tinken to find the place of the IIoroscopo, otherwise the place of the Horoscope will be greater than the real one. Ae for example, take the time from sun-rise, at the end of which the Horoscope is to be found, equal to 60 sidereal aHapis and 444808 when the $8 u n$ is in the vernal equinox at a place where the Palayias is 5 digits or the latitude is $\left.22^{\circ}\right\}$ nearly, and asocrtain the place of the IIoroscope through the instantuncous place of the sun. Ihon, the place of the IIoroscope thus found will be greater than tho placo of tho Sun found at the time of next sun-rise, but this ought to bo equal to it, and you will not be able to make this equal to the place of tho Sun determined at the time of next suli-riso, unloss you determine this through the place of tho sun asoortained at sun-rise, and not through the Sun's instantancous place. Honco it uppears wrong to ascertain the pluce of the Horosoope through tho Sun's instantaneous place. But the answer to this is as follows.

 The arafis contained in the arc of the diurnal circle intercepted between that point of it where the Sun is, at a given time and the Horizon are the sívasu or terrestrial GEATIs, but the obatis contained in the aro of the diurnal circle intercepted between that point of it where the Sun was at the time of sun-rise and the Horizon are the sidereal, GEArIs. Thus it is plain from this that if the Sun's place determined at the time of sun-rise be given, the time between their place and the Horizon reckoned in the diurnal circle will ovidently be the aidereal time and consequently the place of the Horoscope determined through this will be right. But if the instantaneous place of the Sun be given, the tiine given must be the sifasa time, because let the instantaneous place of the Sun be assumed for the Sun's place determined at the time of sun-rise, then the time between this acsumed instantaneous place of the Sun and the Horizon, which is sívasa, will evidently bo the videreal time. Hence the fact as stated in the verse 27 th is right. .
 Therefore if tho Sun's instantaneous place and the place of the Horoscope be given, the time found through these will be tho sirvana time, but if the placo of The Iforoecope and that of tho 8 unt dutorminod at the timo of sun-riso bo fivon, the time aecertained through theso will be the sidereal time. And if you wish to find the sivana time through the place of the Horoscope and that of the Bun determined at the time of the sun-rise assumed the oidereal time just found as a rough sívara time and determined through this the instantaneous place of the Sun by the following proportion.

 ## If 60 anatis

 : Sun's daily motion
 : : theso rough sívama amatis
 : tho Sun's motion roluling to this time; and add thon this rosult to the place of the Sun found at the time of sun-rise. The sum thus found will be tho instantaneous placo of the Sun nearly. Find tho timo again through this

[^37]: * [In order to determine the Moon's shadow at a given time at full moon, some astronomers find her ddirs time i. o. the time elapsed from her rising to tho hour given by the repeated calculation, through her instantaneous place and the place of tho horuscopo dotorminel nt the givon hour. But thoy groatly orr in this, becauso tho time thus found will not be tho $s^{\prime} \angle V A N A$ time and consequently they cannot use this in finding the Moon's shadow. Their way for finding the udira time by the ropostod caloulation would be right, then only if the given place of the Moon would be such us found at tho time of her rising and not her instantaneous place. Becnuse her vdita time found through her instantancous place becomes $s^{\prime} A V A N A$ at onco without having a recourse to tho repented calculation, as it is shown in the note on the verse 27 of this Oluster.-B D.]

[^38]: * Vide accompanging diagram.
 a being place of the Sun : d its place of rising in the horizon : $d \boldsymbol{d} \boldsymbol{t}$
 then $a g$ is the BA'HO and the triangle $a \approx g$ is the one hore represented to.-L. W.

[^39]: [Thio right anglo trinngles staled in the five verses from 15 to 49, aro clearly seen by fastoning some clianctrial threads withiu the armillary eplere. As

[^40]: *This triangle diffors from the lat of the 47th verse only in this respect that the buse of the triangle in the 47 th vorse is equal to the sine of thre rohole amplitude while the base found when the Bun is not in the prime vertical, will always be moro or lese than tho aine of amplitude and is therofore gonerally cullod sankutala.-L. W.

[^41]: - [Had tho Sun's coverer been the eame with that of the Moon, his horns, when he is half eclipsed, would have formed, like those of the Moon obtuse angles. For the apparent diameters of the Sun and Moon are nearly equal to each other. Or the Moon when it is half eclipsod would have represented its horns, like those of the San, forming acute angles, if its ooverer liad beon the eame with that of the Sun. But as this is not the case, the coverer of the Moon is, of course, different and muoh larger than that of the Bun.-B. D.]

[^42]: * In Fig. 1, let Fs be the centro of the earth; A spectator on lier surface; C 1), FG the rertical circles presing through the Moon NI, and tho Suni 8; 1), G tho points of the horizon cut by the vortical cirelee (J , , wh A_{3} and $O_{\text {, tho zonith in tho }}$ Moon's sphero, and F in that of the Sun. Now, let E M S be a line drawn from the centre of the Earth to the Sun in which the Moon lies always at tho time of conjunction, and A 8 the rision line drawn from the spectator A to the Sun. The distance at which the Moon appears depreseed from the rision line in the vertical circlo is her parallar from the Sun.

 When the Sun reaches the zenith F , it is evident that the Moon also will then beat C and the vision line, and the line drawn from the ceutre of the Earth will be coincident. Hence thero is no parallax in the eenith.
 Thus the parnlax of tho Moon from the Sun in the vortical circle is hero shown by means of a diagram which becomes equal to the difference between the parallaxes of the Sun and Moon separatoly found in the vertical oircle an stated by Bia'seara'oilis'bya in the chaptor on eclipses in the commentary va'sara'bia'sixs and tho theories and methode aro also given by him on the parallaxes of tho Sun and Moon. This parallax in the vertical circole which arisee from the zonith distance of the planet is callod the common parallax or the parallax ini altitudo.

[^43]: tho distanco taken in tho scoondary to that circlo from the samo point, is caliod the north and south distance of that point.--B. D.]

 - [Soe Fig. 3, in which by assuming the triunglo r a t as a plane right-angled triangle, $r t=$ buse, $t=$ liypothenuse and $\boldsymbol{r} r=$ perpendioular, and therefore $e r=\sqrt{\theta^{2}-t^{2}} .-$ B. D.]
 \dagger [This is clear from the equations (1) and (2) shown in the precoding large note.-B. D.]

[^44]: - It is olear from tho following proportion.

 If dilforence in minutos of duily motions of Sun and Moon. 60 ailitis - what will
 : given Lambama-kímas or minates of the parallax give;
 $60 \times$ given minutes of the parallax
 or diff. in minutes of Sun's and Moon's motions
 given minutes of the parallax
 $=\overline{\text { diff. in degreos of Sun's and Moon's notious accoleration or delay of con- }}$ junction arising from parallax.-I. W.

[^45]: * [By the distance of any two great circles is hero meant an are intorcoptod betweon them, of a great circle through the poles of which thoy pass.-B. D.]
 + [Here the wata is the are of the prime vertical intercepted between the zenith and the secondary circle to it passing through the place of the planet.B. D.]

[^46]: - This rule and the means by which it has been establiahed by Bhásrazícuí. EYA require elucidation.
 Bhismara'oha'my first directs that the ba'inu or brija be found for the time of the middle of the eclipse and that a circle parallel to the prime vertical, be drawn having for its centre a point on the axis of the prime vertical distant from the centre of the prime vertical, by the amount of the BA'fro. From this
 as centre and the rofy equal to $=\sqrt{\mathrm{rad}^{2}-\mathrm{BA}^{\prime} \overline{\boldsymbol{\sigma}^{2}}}$ as radius draw a circle paral-
 lel to the prime vertical. This circle called an UPAFrimes will cut the dimrnal circle for the time on 2 pointe equally distant from the moridiam. Conncot thodo points by a chord. The half of this chord is the matagiati'jia as well in tho diurnal cirole as in the UPAFgirta, but as these 2 circles diffor in the magnitude, theee sines will be the sines of a different number of degrees in each circle. Now the RATAGIITTIJYK is known, but it is in terms of a large circle. Reduce them to their value in the diurnal circle.

 1. If TKIJYA : YATAJYí : : DYMJYA' $:$ sine of diurnal circlo.

 This sine in diurnal circle is also sine in UPAVaITTA.
 2. If UPA-vpitypa-trijya : this sino : : taidya equal to aksuajyá.
 3. DYMJY A^{\prime} : this result : : THIJYA : sine of AEBHA-VALANA
 now cancel
 and there will remain the rule above stated

 UPAFRITTA-TRIJYA'
 Here our author makes uae of the diumal circlo and oravnitia in torm of

[^47]: * Lot A D B O bo tho meridian; OND tho horizon, A tho zenith; R tho oast point of the horizon; VW G the equinoctial; K tho north pole; I tho south; \mathbf{P} the planet; \boldsymbol{p} its corresponding point in the ecliptio; II $\mathbf{P} \boldsymbol{p} \mathbf{J}$ tho sconondary to tho ooliptic passing through tho p'anot P^{p}, and honco $p P^{\prime}$ tho latitude. Lot $f \mathbf{P} g$ the diurnal circle passing through tho planct P and honco $\boldsymbol{p} \mathbf{R}$ the reotified latitude.

 Now, when the corresponding place of the planet is in the horizon, it is then evident from the accompanying figure, that the planet is clevated above or depressed below the horizon by its latitude op \mathbf{P} and as it is vory diflicult to find the elevation or depression at once, it is therefore ascertained by moans of its two parts, the one of which is from the horizon to the circle of declination, i. e. Q to \mathbf{R}. This partial olevation or depression takes place by the planet's rectifiod latitude p R. And the other part of the elevation or dupression is from the circle of declination to the circle of latitude; i. e. from \mathbf{R} to \mathbf{P} and this occure by the planet's mean latitude p P. From the sum or difference of these two parts, the exact elevation of the planet above the horizon or the depression below it, can be determined. When the terrestrial latitude, of the given place is north and the planet's corresponding place in the ecliptic is in the eastorn horizon, the A^{\prime} EsHA-TALANA is then north and the circle of declination is olevated above the horizon to the north. For this reason, when the A^{\prime} msirapacana is north, tho planet will be elovatod above the eastern horizon if its latitude be north, and if it be south, the planct will bo dopressed below the horizon. But tho reverse of this takos place when the a'ksina-valana is south which ocours on acoount of the sonth latitude of tho given plase, i. o. whon tho a'kbia-valana is south, the oircle of declination is dopresed below tho horizon to the north and hence the planet is deprossod bolow it, if its latitude be norlh, and if it be south, the planet is elevated above the horizon.

 Again, when the planet's longitude torminates in the six ascending signs, it is evident that the Krama-vamana becomes then north, and the north pole of the ecliptic is elevated above the circle of declination passing through the planet. Hence, when the a'yana-valana is north, the planet is elevated above or deprossed below the circle of declination by its mean latitude, as it is north or south. But the reverse of this takes place, whon the a'yana-valana is south, i. e. the planet is depressed below or elevated above the circle of declination, as its latitude is north or south. Becauso when the a'yana-ralana is south

[^48]: [It is evident that the longitude of this point is equal to the are through which it is found, and as the point of the ecliptic 8 signs backwards or forwards from this point is assumed on the horison, this point therefore will at that time be the nonageamal, and as the longitude of that point or nonageaimal is lese than 90° the declination of this point will be north. This dealination equals to the latitude in question. For
 \because The oine of the latitude of the point $=\frac{\mathbf{R} \times \operatorname{ain} \text { latitudo }}{\sin 24^{\circ}}$ (by the arsumption)
 $\therefore \sin$ letitude $=\frac{\sin 84^{\circ} \times \sin \text { longitude of the point }}{\text { Bedius }}$ but this $=$ oin doalination.
 \therefore The deolination of that point or nonageaimal equal to the latitude of the
 place. And hence, if the latitude be north the nonagesimal will be in the senith. For this reason the ecliptic will coinaide with the vertical circle.-B. D.]

[^49]: - Bráskaraomirya is here vory severe on Bramkagupta who of all his prodeccssors is cvidontly lis favorito, but truth seenned to require this condemnation. IIc at the same horo doce justice to Krya-biatta and the author of the Súrya-siddia'mTA. 'Thoy both justly concur in eaging there is no xotir in this case.-L. W.

[^50]: * This rorse is another instance of the double entendre, in which even the

[^51]: * [It is plain from this, that the distance from the point of the staff to the ond of the amplitude is the chord of the are of the diurnal circle passing through the Sun, intercepted between the horizon and the Sun. For this reason, the are subtended by the distance in question in this interior circlo doseribud' with a radius of the diurnal circle which is equal to the cosino of the deolinationn, will denote the time after sun-rise or to sun-sot.-B. D.]

[^52]: Now as the trianglem a a_{n} and $S a m$ are the latitudinal triangles, the triangle 8 \& p is also the latitudinal

 It is when S , 8 two places of the Sun are both north or both south to the prime vortical, but when one place is north and other is south, the sum of the внолas is taken.-B. D.]
 diurnal cirole, the line therefore drawn from the top of the first : $1 . \operatorname{six}$ to that of the latt, will aleo be in the same plane and hence the two linee touching this line, drawn from the top of the middle s^{\prime} Anix one to eastern and the other to wostern point of the horison, lie in this plane. Therefore, the line joining these two points of the horizon is the intersecting line of the plane of tho diurnal sirole and that of the horizon, and conseguently it is the UDATA'bTA sưTB4.B, D.]

[^53]: - The existence of such grose error in the principles of a calculation as are hore referrod to as oxisting in the works of Bra'sxara's predecessors would seem to indicate that the science of astronomy was not of more recent cultivation thau Mr. Bentloy and othore have maintained.-L. W.

[^54]: † The obsorver first direots ablis staff to d, the root of the tree: The staff

[^55]: - This is one of those verses in which a double or triple meaning is attempted to be supported: to cffoct this, several letters however are to be read differeutly. -L. W.

[^56]: - Biábyara'oha'rya himself has given the following example in his commentary $7 A^{\prime}$ BANA'-BIIL'BIIYA

 Suppose Moon to have 4 revolutions in a karpa of 60 days
 Sun, 8

 Jupiter, 7
 Baturn, 8
 \qquad
 \qquad
 Then $4 \times 1+8 \times 12+5 \times 6=70$ and $7 \times 3=81$.
 $\Delta 870$ cannot be subtracted from 21 add 60 to it $=81$,

 | Subtract $\quad 70$, | |
 | ---: | ---: |
 | remainder | 11 : |

 let $p=$ revolutions of the unknown planet, then by the question $11-p=9$
 but $11+p=9$ or $p=9-11=60+0=11=58$ or $11-9=2=p$ -
 It thus appoars that tho unknown planet has 2 or 58 revolutions in the EALPA.
 Now let us see if this holds true on the 23rd day of this YanPa $:$
 revolutions

 signs 10 .. 0 subtractod
 Saturn, $60: 9$: : 23 : 5 .. 1
 Jupiter, $60: 7:: 23: 8$.. 6 this $\times 8=0$.. 18 from
 for $p, 60: 2:: 23: 0$.. 6 this sub. from $2 \ldots 18$ remainder
 9 .. 6
 corresponding with Suturn, 5 .. 12

[^57]: - [According to the dhiveiddimida tantra of malia the terrestrial days in a rogi $=1677917500$ and the sum of all the 36 remainders for one day $=$ 118407188600968 : this abraded by the terrestrial days in a $\mathbf{~ Y O A A}=\mathbf{2 5 9 4 0 0 9 6 8}$. Let $x=$ abirgana then say As $1 ; 259400968:$: $2: 259400968 \times 3$
 This abraded by 1677917500 the terrestrial days in a YUGA will be equal to 1491227500 the given abraded sum of the 36 remaindera, now
 let $y=$ the quotient got in abrading $259400968 x$ by 1577917500 , then $259400968 z-1577917500 y=14912276{ }^{\circ} 0$.
 It is ovident from this that as the coefficients of m and y are divisible by 4, the given remainder 1491227500 also muat be divisible by 4 , otherwise the question will ba imposaible as stated in the text.

 Hance, dividing the both sides of the above question by 4,
 $64850248 x-394479875 y=372806875$: (A)

[^58]: Then any as bofore

 - [For anewers to these questions see the note on the 27th verse of the 7th Oh.-B. D.]
 t [Hor solving this queation, it is necossary to define somo lines drawn in tho Armillary aphore and shew some of cheir rolations.

[^59]: - [IIere tho problom is this:-Given tho Sun's declination or amplitude, the Equinoctinl sliadow of the place and the Sun's azinuth, to find the Sun's shadow.
 For solving this problem Buismaríonírya has stated two different Rules in the Ganitiduyiza. Of them, we now shew hore the second.
 "Multiply the square of the Radius by the square of the equinoctial shadow, and the square of the cosine of the azimuth by 144. The sum of the products divided by the difference between the squares of the cosine of the azinuth and the sine of the amplitude, is called the prathaya (first) and the continued product of the Radins, equinootial shadow and the sine of the amplitude divided by the (same) difference is called the AnYa (second). Take the squareroot of the square of the ANYA added to the PrATrAMA : this root decreased or increasod by tho ANYA according as the Sun is in the northern or southorn hemisphere gives the hypothenuse of the shadow (of the Sun) whon the Sun is in any given direction of the compass."
 "But when the cosine of the azimuth is less than the sine of the amplitude, take tho square-root of the square of the anya diminished by the pratuama: the \triangle MIA decreased and increased (separately) by the equare-root (just found) gives the two valuee of the hypothenuse (of the Sun's shmdow) when the Suu is in the northern hemisphere."
 This rule is proved algebraically thus.
 Let $a=$ the sine of amplifude,
 $\Delta=$ the sine of aximuth,
 $\theta=$ the Equinoctial sliadow,
 and $x=$ the liypothonuse of the shadow when the Sun is in any given direc. tion of the compass.
 Then say
 and \therefore the sine of the Sun's zenith distance $=\sqrt{R^{2}-\left(\frac{12 B}{2}\right)^{2}}=\frac{R}{m} \sqrt{m^{2}-144}$

 $$
 \text { Now, as } 12: e=\frac{12 \mathbf{R}}{x}: s^{\prime} \Delta n \operatorname{cotana}=\frac{\mathbf{R}}{x}
 $$

 \therefore Bínd or the sine of an are of a circle of position contained between the
 Sun and the Prime Vortical $=a \mp \frac{c \mathrm{R}}{\infty}:($ (see Ch. VII. V. si) here the signor + is usod according as the Sun is in the northern or southern homispleere.
 Then eay

[^60]: * The rule mentioned here for finding the pajabial when tho two shadows and their respective muojas are given, is proved thus,

 Lot $h_{1}=$ Iho first hypothonueo of the shaciow,
 $b_{1}=$ its correpronding UIIUJA,
 $h_{2}=$ the second hypothenuse,
 $\underset{\text { Then }}{\text { and }} \boldsymbol{i}_{2}=$ its corresponding BHUSA,

 $$
 \begin{aligned}
 & \text { and nleo as } h_{1}: b_{1}:: R: \frac{b_{2} R}{h_{2}}=\text { the first groat niosa, } \\
 & \text { and .- } \\
 & \text { Thien the palabia' }=\frac{\frac{b_{1} \mathrm{R}}{h_{1}} \mp \frac{b_{\mathrm{g}} \mathrm{R}}{h_{2}}}{12 \mathrm{R}} \frac{12 R}{12 \mathrm{R}} \text { (} 800 \text { Ch. XI. V. 32) } \\
 & =\frac{\overline{b_{1} h_{9}} \mp b_{9} h_{1}}{h_{1}} \\
 & \text { Henco the Rulo.-L. W. } \\
 & \times 2
 \end{aligned}
 $$

[^61]: *This refers to the 84th verse of the Ch. XI.-L. W.
 \dagger [Answers to these questions will be found in the 11th Ch. -B. D.]

[^62]: * [These rules given in the verses from 16 to 20 are easily deduced from the rules given in tho rerses 21 and $22 .-$ B. D.]
 + ßuÁskalkíníkYa hus given thusu rulus in his work without any dumon-stration.-13. D.]

